
Methods and
Encapsulation	

Lecture 17 	
	

Announcements for This Lecture	

10/27/14	
 2	
Methods and Encapsulation	

•  Due on Sunday at midnight	

§  Turned on in CMS today	

•  Looking at Consultant Hours	

§  Thursday was very busy	

§  Sat. hours might be possible	

•  Survey extra important!	

•  Will post A5 at end of week	

§  Written assignment like A2	

§  Can do at the same time	

	

•  Simple class exercise	

§  Fill in predefined methods	

§  Setting you up for A6…	

•  Exams are handed back	

§  Organized by lab section	

§  Unclaimed exams will go���

to handback room on Thurs	

•  Regrades turned on in CMS	

§  For major mistakes only	

Lab this Week	
Assignment 4	

Recursion and A4	

Wrong	

•  Recursion on pmap keys	

§  Argument must get smaller	

§  pmap should never change	

•  Also do not loop over keys	

•  Example: Autocomplete	

 keys = pmap.keys()
 accum = []
 for word in keys:
 # Add word if it extends prefix
 return accum

Right	

•  Recursion on prefix	

§  Extend prefix via pmap	

§  Compute extended answer	

§  Combine with others	

•  Example: Autocomplete	

§  pmap = { 'a':['t','x',''], …
§  Extensions of 'a' are	

•  'a', plus	

•  Extensions of 'at', plus	

•  Extensions of 'ax'

10/27/14	
 Methods and Encapsulation	
 3	

Important!	

YES	

 class Point(object):
 """Instances are 3D points
 Attributes:
 x: x-coord [float]
 y: y-coord [float]
 z: z-coord [float]"""
 …

NO	

class Point:
 """Instances are 3D points
 Attributes:
 x: x-coord [float]
 y: y-coord [float]
 z: z-coord [float]"""
 …	

“Old-Style” Classes	

Very, Very Bad	

3.0-Style Classes	

Well-Designed	

10/27/14	
 Methods and Encapsulation	
 4	

Converting Values to Strings	

str() Function	

•  Usage: str(<expression>)
§  Evaluates the expression	

§  Converts it into a string	

•  How does it convert?	

§  str(1) → '1'
§  str(True) → 'True'
§  str('abc') → 'abc'
§  str(Point()) → '(0.0,0.0,0.0)'

Backquotes	

•  Usage: `<expression>`
§  Evaluates the expression	

§  Converts it into a string	

•  How does it convert?	

§  `1` → '1’
§  `True` → 'True'
§  `'abc'` → "'abc'"
§  `Point()` → �

"<class 'Point'> (0.0,0.0,0.0)"
10/27/14	
 Methods and Encapsulation	
 5	

Converting Values to Strings	

str() Function	

•  Usage: str(<expression>)
§  Evaluates the expression	

§  Converts it into a string	

•  How does it convert?	

§  str(1) → '1'
§  str(True) → 'True'
§  str('abc') → 'abc'
§  str(Point()) → '(0.0,0.0,0.0)'

Backquotes	

•  Usage: `<expression>`
§  Evaluates the expression	

§  Converts it into a string	

•  How does it convert?	

§  `1` → '1’
§  `True` → 'True'
§  `'abc'` → "'abc'"
§  `Point()` → �

"<class 'Point'> (0.0,0.0,0.0)"
10/27/14	
 Methods and Encapsulation	
 6	

Backquotes are ���
for unambigious

representation	

What type is
this value?	
 The value’s

type is clear	

What Does str() Do On Objects?	

•  Does NOT display contents	

>>> p = Point(1,2,3)
>>> str(p)
'<Point object at 0x1007a90>'

•  Must add a special method	

§  __str__ for str()
§  __repr__ for backquotes	

•  Could get away with just one	

§  Backquotes require __repr__	

§  str() can use __repr__ ���

(if __str__ is not there) 	

class Point(object):	

 """Instances are points in 3d space"""
 …
 def __str__(self):
 """Returns: string with contents"""
 return '('+self.x + ',' +
 self.y + ',' +
 self.z + ')'
	

 def __repr__(self):
 """Returns: unambiguous string"""
 return str(self.__class__)+	

 str(self)	

10/27/14	
 7	
Methods and Encapsulation	

What Does str() Do On Objects?	

•  Does NOT display contents	

>>> p = Point(1,2,3)
>>> str(p)
'<Point object at 0x1007a90>'

•  Must add a special method	

§  __str__ for str()
§  __repr__ for backquotes	

•  Could get away with just one	

§  Backquotes require __repr__	

§  str() can use __repr__ ���

(if __str__ is not there) 	

class Point(object):	

 """Instances are points in 3d space"""
 …
 def __str__(self):
 """Returns: string with contents"""
 return '('+self.x + ',' +
 self.y + ',' +
 self.z + ')'
	

 def __repr__(self):
 """Returns: unambiguous string"""
 return str(self.__class__)+	

 str(self)	

10/27/14	
 8	
Methods and Encapsulation	

Gives the
class name	

__repr__ using
__str__ as helper	

Special Methods in Python	

•  Have seen three so far
§  __init__ for initializer
§  __str__ for str()
§  __repr__ for backquotes

•  Start/end w/ two underscores	

§  This is standard in Python	

§  Used in all special methods	

§  Also for special attributes	

•  For a complete list, see	

http://docs.python.org/
reference/datamodel.html

class Point(object):
 """Instances are points in 3D space"""�
 …

 def __init__(self,x=0,y=0,z=0):
 """Initializer: makes new Point"""
 …

 def __str__(self,q):
 """Returns: string with contents""”
 …

 def __repr__(self,q):
 """Returns: unambiguous string""”
 …

10/27/14	
 Methods and Encapsulation	
 9	

Challenge: Implementing Fractions	

•  Python has many built-in
math types, but not all	

§  Want to add a new type	

§  Want to be able to add,

multiply, divide etc.	

§  Example: ½*¾ = ⅜	

•  Can do this with a class	

§  Objects are fractions	

§  Have built-in methods to

implement +, *, /, etc…	

§  Operator overloading	

class Fraction(object):
 """Instance attributes:
 numerator: top [int]
 denominator: bottom [int > 0]"""

 def __init__(self,n=0,d=1):
 """Initializer: makes a Frac"""
 self.numerator = n
 self.denominator = d

 def __str__(self):
 """Returns: Fraction as string"""
 return (str(self.numerator)�
 +'/'+str(self.denominator))

10/27/14	
 Methods and Encapsulation	
 10	

Operator Overloading: Multiplication	

class Fraction(object):
 """Instance attributes:
 numerator: top [int]
 denominator: bottom [int > 0]""”

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 top = self.numerator*q.numerator
 bot = self.denominator*q.denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python ���
converts to	

Operator overloading uses
method in object on left.	

10/27/14	
 Methods and Encapsulation	
 11	

Operator Overloading: Addition	

class Fraction(object):
 """Instance attributes:
 numerator: top [int]
 denominator: bottom [int > 0]""”

 def __add__(self,q):
 """Returns: Sum of self, q�
 Makes a new Fraction�
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 bot = self.denominator*q.denominator
 top = (self.numerator*q.denominator+
 self.denominator*q.numerator)
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p+q

>>> r = p.__add__(q)

Python ���
converts to	

Operator overloading uses
method in object on left.	

10/27/14	
 Methods and Encapsulation	
 12	

Comparing Objects for Equality	

•  Earlier in course, we saw ==
compare object contents	

§  This is not the default	

§  Default: folder names	

•  Must implement __eq__
§  Operator overloading!	

§  Not limited to simple ���

attribute comparison	

§  Ex: cross multiplying	

1 2	

2 4	

class Fraction(object):
 """Instance attributes:
 numerator: top [int]
 denominator: bottom [int > 0]"""

 def __eq__(self,q):
 """Returns: True if self, q equal, �
 False if not, or q not a Fraction"""
 if type(q) != Fraction:
 return False
 left = self.numerator*q.denominator
 rght = self.denominator*q.numerator
 return left == rght

4	
 4	

10/27/14	
 Methods and Encapsulation	
 13	

Issues With Overloading ==	

•  Overloading == does not ���
also overload comparison !=
§  Must implement __ne__
§  Why? Will see later	

§  But (not x == y) is okay!	

•  What if you still want to
compare Folder names?	

§  Use is operator on variables	

§  (x is y) True if x, y contain

the same folder name	

§  Check if variable is empty:���

x is None (x == None is bad)	

class Fraction(object):
 …
 def __eq__(self,q):
 """Returns: True if self, q equal, �
 False if not, or q not a Fraction"""
 if type(q) != Fraction:
 return False
 left = self.numerator*q.denominator
 rght = self.denominator*q.numerator
 return left == rght

 def __ne__(self,q):
 """Returns: False if self, q equal, �
 True if not, or q not a Fraction"””
 return not self == q

10/27/14	
 Methods and Encapsulation	
 14	

is Versus == 	

•  p is q evaluates to False
§  Compares folder names	

§  Cannot change this	

	

•  p == q evaluates to True
§  But only because method

__eq__ compares contents	

	

	

	

	

	

	

id2	

Point	

id2	
p	
 id3	
q	

x 2.2

y

z

5.4

6.7

	

	

	

	

	

	

id3	

Point	

x 2.2

y

z

5.4

6.7

Always use (x is None) not (x == None)
10/27/14	
 Methods and Encapsulation	
 15	

Getting Information About a Class	

•  Recall the help() function
shows module contents	

§  Works on classes too	

§  Example: help(Point)

•  Can even use on object	

§  In that case, runs help on

the class of that object	

§  Example: help(p)

•  Shows all methods	

§  And class attributes	

class Fraction(__builtin__.object)	

 | Instance is a fraction n/d	

 | Instance Attributes:	

 | numerator: top part [int]	

 | denominator: bottom part [int > 0]	

 | 	

 | Methods defined here:	

 | 	

 | __add__(self, other)	

 | Returns: Sum of self and other as a ���
 | new Fraction. Does not modify ���
 | contents of self or other.���
 |	

 | Precondition: other is a Fraction	

 …	

10/27/14	
 Methods and Encapsulation	
 16	

Summary + Files	

•  Methods with double underscores are special	

§  Used to implement operators (e.g. +, ==, <)	

§  Great for implementing mathematical objects	

§  Example: fraction.py

•  Attributes cannot enforce invariants	

§  Want to wrap them in getters, setters	

§  Setters use asserts to enforce invariants	

§  Example: betterfraction.py

•  But how does class RGB work?	

§  No setters, getters but enforces its invariants	

§  Advanced programming topic. Ask outside of class.

10/27/14	
 Methods and Encapsulation	
 17	

