Lecture 17

Methods and
Encapsulation

Announcements for This Lecture

Assignment 4 Lab this Week
* Due on Sunday at midnight e Simple class exercise
= Turned on in CMS today * Fill in predefined methods
 Looking at Consultant Hours " Setting you up for A6...

= Thursday was very busy * Exams are handed back

= Sat. hours might be possible * Organized by lab section

* Unclaimed exams will go
to handback room on Thurs

Will post A5 atend of week o Regrades turned on in CMS
= Written assignment like A2

e Survey extra important!

= For major mistakes only
= (Can do at the same time

10/27/14 Methods and Encapsulation

Recursion and A4

Wrong Right
* Recursion on pmap keys * Recursion on prefix
" Argument must get smaller = Extend prefix via pmap
= pmap should never change = Compute extended answer
e Also do not loop over keys = Combine with others
* Example: Autocomplete * Example: Autocomplete
keys = pmap.keys() = pmap = { 'a['t','x,"], ...
accum = [] = Extensions of 'a' are
for word in keys: * '3/, plus

Add word if it extends prefix
return accum

e Extensions of 'at’, plus
* Extensions of 'ax’

10/27/14 Methods and Encapsulation

Important!

YES NO
class Point(object): class Point:

"""Instances are 38D points """Instances are 38D points
Attributes: Attributes:

X: x-coord [float] X: x-coord [float]

y: y-coord [float] y: y-coord [float]

z: Zz-coord [float]""" z:. Zz-coord [float]"""

3.0-Style Classes “Old-Style” Classes
Well-Designed Very, Very Bad

10/27/14 Methods and Encapsulation

Converting Values to Strings

str() Function Backquotes

o Usage: str() o Usage:

= Evaluates the expression = Evaluates the expression

= Converts it into a string = Converts it into a string
e How does it convert? e How does it convert?

= str(l) = ' N e

= str(True) — 'True' = True — 'True'

= gtr('abc") — 'abe' = “'agbe'” — "abc™

= str(Point()) — '(0.0,0.0,0.0)' = "Point) —

10/27/14

"<class 'Point"™> (0.0,0.0,0.0)"

Methods and Encapsulation

Converting Values to Strings

str() Function Backquotes
» Usage: str() . uf A
, Backquotes are
= Evaluates the expression " .o
= Converts it into a string " for unambzglous
e How does it convert? © Ha representation)
" str(D) =1 What type is R
o —_ : .)
str(True) this value? \ True\ The value’s
= gte('abe’) — '30C " abe 1 type is clear

= str(Point()) — '(0.0,0.0,0.0)' = “Point()"
"<class 'Point"™> (0.0,0.0,0.0)"

10/27/14 Methods and Encapsulation

What Does str() Do On Objects?

e Does NOT display contents class Point(object):

>>> p = Point(1,2,3) """Instances are points in 8d space"""

>>> ste(p) def _ str_ (self):

<Point object at 0x1007a90>" """Returns: string with contents""
e Must add a special method return '(‘+selfx + '’ +

= gtr for str() selfy +',' +

= _ repr__ for backquotes self.z +")
* Could get away with just one def repr_ (self):

= Backquotes require __repr__ """Returns: unambiguous string"""

= gtr() can use __repr___ return str(self._ class_)+

(if __str__ 1s not there) str(self)

10/27/14 Methods and Encapsulation 7

What Does str() Do On Objects?

e Does NOT display contents class Point(object):

>>>p = Point(1,2,3) """Instances are points in 8d space""

>>> str(p) def _ str__ (self):

<Point object at 0x1007a90>" """Returns: string with contents""
e Must add a special method return '(‘+selfx + ') +

= gtr for str() selfy +',' +

= _ repr__ for backquotes self.z +)
e Could get away with just one def repr (self): Gives the

= Backquotes require __repr__ "Returns: unambi class name

= gtr() can use __repr___ return str(self.__class_)+

(if __str__ 1s not there) str(self)
__repr__ using }

10/27/14 Methods and Encapsulation __str__ as helper

Special Methods in Python

* Have seen three so far class Point(object):

. C e . ""'Tnstances are points in 3D space™"
b init for initializer P P

= gtr for strQ
def _ init_ (self,x=0,y=0,z=0):

= _ repr__ for backquotes
""Tnitializer: makes new Point™"

e Start/end w/ two underscores

= This 1s standard in Python
def _ str_ (self,q):

= Used in all special methods "Returns: string with contents™”

= Also for special attributes

e For a complete list, see def repr_ (self,q):

http://docs.python.org/ """Returns: unambiguous string""”
reference/datamodel.html

10/27/14 Methods and Encapsulation 9

Challenge: Implementing Fractions

° Python has many built-in class Fraction(object):

math types, but not all Instance attributes:
numerator: top [int]

*= Want to add a new type
= Want to be able to add,

denominator: bottom [int > O]"""

def _ init_ (self,n=0,d=1):

multiply, divide etc.
"""Tnitializer: makes a Frac"""
= Example: 12*% =%
self.numerator = n
e Can dO this with a class self.denominator = d

= (Objects are fractions def str_ (self):

. Have bllllt—ln methOdS to i Returns: Fraction as Stringunu
implement +, *,/, etc... return (str(self.numerator)
= Operator overloading +'/'+str(self.denominator))

10/27/14 Methods and Encapsulation 10

Operator Overloading: Multiplication

class Fraction(object):
"""Tnstance attributes:
numerator: top [int]
denominator: bottom [int > 0]""”

def _ mul__ (self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>>p = Fraction(1,2)
>>> q = Fraction(3,4)
>>>p =Dp*Q

Python

\ % converts to

>>>r=p._mul_(q

Operator overloading uses
method in object on left.

10/27/14 Methods and Encapsulation 11

Operator Overloading: Addition

class Fraction(object):
"""Tnstance attributes:
numerator: top [int]
denominator: bottom [int > O]""”

def _ add__ (self,q):

"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""

assert type(q) == Fraction

bot = self.denominator*q.denominator

top = (self.numerator*q.denominator+
self.denominator*q.numerator)

return Fraction(top,bot)

>>>p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> P = p+(

Python

\ % converts to

>>>r=p.__add__(q)

Operator overloading uses
method in object on left.

10/27/14 Methods and Encapsulation 12

Comparing Objects for Equality

e Farlier in course, we saw == class Fraction(object):
compare object contents Instance attributes:

= This 1s not the default
= Default: folder names

 Must implement __eq def __eq (self,q):
"""Returns: True if self, q equal,
False if not, or q not a Fraction""

numerator: top [int]
denominator: bottom [int > O]"""

= Operator overloading!

B NOt. limited to Simple if type(q) |= Fraction:
attribute comparison return False
= Ex: cross multiplying left = self.numerator*q.denominator
4 1 2 4 rght = self.denominator*q.numerator
7 return left == rght

10/27/14 Methods and Encapsulation

Issues With Overloading ==

e Overloading == does not class Fraction(object):

also overload comparison |=
def __eq (self,Q):

"""Returns: True if self, g equal,
= Why? Will see later False if not, or q not a Fraction""

= But (not x == y) is okay! if type(q) != Fraction:
return False

" Must implement __ne_

 What if you still want to

left = self.numerator*q.denominator
compare Folder names?

rght = self.denominator*q.numerator
= Use is operator on variables return left == rght
" (xisy) Trueif x, y contain

def If,q):
the same folder name ef _ne_ (self,q)

))) """Returns: False if self, q equal,
= Check if variable 1s empty: True if not, or g not a Fraction"””

x is None (x == None i1s bad) return not self == q

10/27/14 Methods and Encapsulation 14

is Versus ==

e pis q evaluates to False e p == (evaluates to True
= Compares folder names * But only because method
= Cannot change this __€q__ compares contents
p | id2 id2 q | id3 id3
Point Point
X 2.2 X 2.2
y 5.4 y 5.4
z 6.7 z 6.7

Always use (X is None) not (x == None)

10/27/14 Methods and Encapsulation 15

Getting Information About a Class

e Recall the help() function class Fraction(__builtin__.object)

h d 1 | Instance 1s a fraction n/d
shows module contents | Instance Attributes:

= Works on classes too | numerator: top part [int]
denominator: bottom part [int > O]

= Example: help(Point)

e (Can even use on object Methods defined here:

Returns: Sum of self and other as a
new Fraction. Does not modify
contents of self or other.

the class of that object
= Example: help(p)

|
|
|
|
= In that case, runs help on | add__ (self, other)
|
|
|
o Shows all methods |

Precondition: other is a Fraction
= And class attributes

10/27/14 Methods and Encapsulation 16

Summary + Files

* Methods with double underscores are special
= Used to implement operators (e.g. +, ==, <)
= Great for implementing mathematical objects
= Example: fraction.py

e Attributes cannot enforce invariants
= Want to wrap them in getters, setters
= Setters use asserts to enforce invariants
= Example: betterfraction.py

e But how does class RGB work?

= No setters, getters but enforces its invariants

* Advanced programming topic. Ask outside of class.

10/27/14 Methods and Encapsulation

17

