Lecture 16

Classes

Announcements for This Lecture

Prelim and Regrades Assignments/Reading
e All Prelims are all done e Should be working on A4

= Solutions are now posted = Watch Piazza for updates

= Make-ups graded by Sun. * Complete Part B tomorrow
e Handed back in lab section " Recursion next week
e Regrades open next week * Reading: Chapters 15, 16

= Only for MAJOR mistakes = Chapter 17 for next week

= We reserve the right to take = Lot of reading but important

off points in a regrade

10/23/14 Classes 2

Recall: Objects as Data in Folders

* An object is like a manila folder

e [t contains other variables

= Variables are called attributes

= Can change values of an attribute

It has a “tab” that identifies it
= Unique number assigned by Python

* Fixed for lifetime of the object

10/23/14

(with assignment statements)

Classes

Unique tab
1dentifier
id{
X 2.0
vy | 3.0
7z 5.0

Recall: Classes are Types for Objects

* Values must have a type

= An object is a value

= Object type 1s a class

10/23/14

id2

Point

2.0

~

e (lasses are how we add
new types to Python

class name

3.0

5.0

Classes

Classes
e Point
e RGB
e Turtle
e Window

Classes Have Folders Too

Object Folders

Class Folders

e Separate for each instance

Point

id2

X 2.0
y 3.0
Z 5.0

10/23/14

id3

Point

5.0

7.2

-0.5

e Data common to all instances

Recall: Objects can have Methods

¢ Method: function tied to object p | 1d3 q | id4
= Function call: id3 .14
<function-name>(<arguments>) Point ——
= Method call:
<object-variable>.<function-call> x [20 x | 14
= Use of a method is a method call Y L2Y y [0.0
4 3.0 z 0.0

e Example: p.distanceTo(q)

= Both p and g act as arguments
* Very much like distanceTo(p, @)

e Methods (often) in class folders

10/23/14 Classes 6

Name Resolution for Objects

* (object) {(name) means p | 1d3 q | id4
= Go the folder for object id3 id4
= Find attribute/method name L @I Point
X 5.0 X 7.4

= If missing, check class folder

= [f not in either, raise error

e For most Python objects
= Attributes are in object folder

= Methods are in class folder

e Rules can be broken...

(but not in this class)

10/23/14 Classes 7

Goes 1nside a

The Class Definition module, just

like a function

. definition. |

class <class-name>(0object):

"""Class specification""
<function definitions>

<assignment statements>

<any other statements also allowed>

class Example(object):
"""The simplest possible class."™
pass

10/23/14 Classes 8

keyword class
Beginning of a
class definition

The Class Definition

Specification
(similar to one
for a function)

to define
methods

=

to define
attributes

=

10/23/14

vl

>‘> """Class specification"""

<assignment statements>

_

Goes inside a
module, just
like a function
definition. Y

’l class <class-name>(object): — Do not forget the colon!

more on this later

<function definitions>

<any other statements also allowed>

...but not often used

—

class Example(object):

"""The simplest possible class."™

pass

Classes

Python creates
after reading the
class definition

Recall: Constructors

* Function to create new instances - IR id2
1

* Function name == class name

Example

= Created for you automatically

e (Calling the constructor:

= Mak bject fold
akes a new object folder o "~

= Initializes attributes back to this

= Returns the 1d of the folder

e By default, takes no arguments

= ¢ = Example()

10/23/14 Classes 10

Instances and Attributes

* Assignments add object attributes

. . e| 1d2
" <object>.<att> = <expression> id2
= Example: e.b =42 Example
* Assignments can add class attributes b [1

" <class>.<att> = <expression>
= Example: Example.a = 29

* Objects can access class attributes
= Example: print e.a
= But assigning it creates object attribute
= Example: e.a =10

* Rule: check object first, then class
10/23/14 Classes 11

Instances and Attributes

* Assignments add object attributes [o
" <object>.<att> = <expression> id2
= Example: e.b =42 ﬁ Not how Example
e Assignments can add ¢ e b1

" <class>.<att> = <expression>
= Example: Example.a = 29

* Objects can access class attributes
= Example: print e.a
= But assigning it creates object attribute
= Example: e.a =10

* Rule: check object first, then class
10/23/14 Classes 12

Instances and Attributes

* Assignments add object attributes

. e| id2
" <object>.<att> = <expression> id2
= Example: e.b =42 Example
* Assignments can add class attributes b [1
" <class>.<att> = <expression>
= Example: Example.a = 29 4 10

* Objects can access class attributes
= Example: print e.a
= But assigning it creates object attribute
= Exampleje.a =10

* Rule: check object first, then class
10/23/14 Classes 13

Invariants

e Properties of an attribute that must be true

* Works like a precondition:

= If invariant satisfied, object works properly

= If not satisfied, object 1s “corrupted”
 Examples:
= Point class: all attributes must be floats

= RGB class: all attributes must be ints in 0..255

* Purpose of the class specification

10/23/14 Classes

14

The Class Specification

10/23/14

class Worker(object):

"""An instance is a worker in an organization.

Instance has basic worker info, but no salary information.

ATTRIBUTES:
Iname: Worker’s last name.
ssn: Social security no.
boss: Worker's boss.

Classes

str]
int in 0..999999999]

Worker, or None if no boss]

15

The Class Specification

Short
class Worker(object): summary
"""An instance is a worker in an organization. o
2 detail }

Attribute Instance has basic worker info, but no salary information.

Description

ATTRIBUTES: .

Iname: Worker’s last name. [str] @‘a/m_}
Attribute
Name

ssn: Social security no. [int in 0..999999999]
boss: Worker's boss. Worker, or None if no boss]

10/23/14 Classes 16

Method Definitions

* Looks like a function def class Point(object)
"""Tnstances are points in 4d space

= But indented inside class
X: X coord [float]

= The first parameter

. y: y coord [float]
is always called self

z: z coord [float] "™

e In a method call: def distanceTo(self,q):
"""Returns: dist from self to q
Precondition: q a Point"""

= Parentheses have one less

argument than parameters
assert type(q) == Point

sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
 Example: a.distanceTo(b) (self.z-0.2)**2)

return math.sqrt(sqrdst)

= The object in front 1s
passed to parameter self

10/23/14 Classes 17

Methods Calls

 Example: a.distanceTo(b)

Point

) id2
id2
X 1.0
y 2.0
z 3.0

10/23/14

b id3
id3
Point
X 0.0
y 3.0
z -1.0
Classes

class Point(object):
"""Instances are points in 3d space
X: X coord [float]
y: y coord [float]
z: z coord [float]
def distanceTo(self,q):
"""Returns: dist from self to q
Precondition: q a Point"""

assert type(q) == Point

sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
(self.z-q.2)**2)

return math.sqrt(sqrdst)

18

Methods Calls

 Example: a.distanceTo(b)

a id2 b id3
id2 id3
Point Point
X 1.0 X 0.0
y 2.0 y 3.0
z 3.0 z -1.0
distanceTo 1
self id2
q id3
10/23/14 Classes

class Point(object):
"""Instances are points in 3d space
X: X coord [float]
y: y coord [float]
z: z coord [float]
def distanceTo(self,q):
"""Returns: dist from self to q
Precondition: q a Point"""

assert type(q) == Point

sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
(self.z-q.2)**2)

return math.sqrt(sqrdst)

19

Initializing the Attributes of an Object (Folder)

* Creating a new Worker is a multi-step process:

= w = Worker() < Instance is empty
= w.Iname = "'White'

* Want to use something like
w = Worker('White', 1234, None)
= Create a new Worker and assign attributes
= Iname to 'White', ssn to 1234, and boss to None

e Need a custom constructor

10/23/14 Classes 20

Special Method: __init__

w = Worker('Obama', 12334, None)

def _ init_ (self, n, s, b):
""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.

self.lname = n

self.ssn =8

self.boss =D

10/23/14

Classes

[Called by the constructor]

id8

Iname
ssn

boss

Worker

'Obama’

1234

None

21

Special Method: __init__

W — WUL'KEL\ vbal”

/ two underscores

L 10OZA NTAan AN

don’t forget self —

\
dé@init_(self, I,

a Worker or None.
self.lname = n
self.ssn =8
self.boss =D

"""Tnitializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either

s, b):

10/23/14 == use self to assign attributes sses

[Called by the constructor]

id8

Iname
ssn

boss

Worker

'Obama’

1234

None

22

Evaluating a Constructor Expression

Worker('Obama’', 1234, None)

1. Creates a new object (folder)
of the class Worker

= Instance is initially empty 1d3
Puts the folder into heap space

3. Executes the method __init Iname
= Passes folder name to self e
= Passes other arguments in order .

= Executes the (assignment)
commands 1n initializer body

4. Returns the object (folder) name

10/23/14 Classes

Worker

'Obama’

1234

None

23

Aside: The Value None

e The boss field 1s a problem.

varl ids > 1dS

= boss refers to a Worker object Point
= Some workers have no boss x | 22
= Or maybe not assigned yet var2 | id6
(the buck stops there) y [o4
e Solution: use value None z | 6.7
= None: Lack of (folder) name
= Will reassign the field later! ul :
e Be careful with None values var3 | None ot
= var3.x gives error! * 22
= There is no name in var3 y | 2.0
* Which Point to use? 2 | 0.0

10/23/14 Classes 24

Making Arguments Optional

* We can assign default values

to

init__ arguments

= Write as assignments to
parameters in definition

= Parameters with default
values are optional

e Examples:

10/23/14

p = Point()

p = Point(1,8,3)
p = Point(1,2)

p = Point(y=3)
p = Point(1,z=R)

(0,0,0)
(1,2,3)
(1,2,0)
(0,3,0)
(1,0,2)

class Point(object):

Classes

"""Instances are points in 3d space
X: X coord [float]
y: y coord [float]

z: Z coord [float]

def __init_ (self,x=0,y=0,2=0):
""Initializer: makes a new Point
Precondition: x,y,z are numbers"""
selfx =x

selfy=y

self.z =z

25

Making Arguments Optional

* We can assign default values class Point(object):
to __init_ arguments """Instances are points in 3d space

X: X coord [float]

= Write as assignments to

parameters in definition y: y coord [float]

= Parameters with default z: z coord [float] ™"

values are optional def init_ (self,x=0,y=0,2=0):

* Examples: """Initializer: makes a new Point
= D = Point(} £0000 Precondition: x,y,z are numbers™"
= p = Point(Assigns in order self x = x
= p= POint(l,Z)A Use parameter name} selfy =y
= p = Point(y=3y__When outotorder J| self.z =z
"p= Point(l,z=2>i Can mix two }
approaches

10/23/14 Classes 26

Making Arguments Optional

* We can assign default values class Point(object):
to __init_ arguments """Tnstances are points in 3d space

X: X coord [float]

= Write as assignments to

parameters in definition y: y coord [float]

= Parameters with default z: z coord [float] ™"

values are optional def init_ (self,x=0,y=0,2=0):

* Examples: """Initializer: makes a ns
= p = Point(} # (0 N 0N s
= p = Point(Assigns in order

p = Point(1,8) | Use parameter name
p = Point(y=3 when out of order

TT \V,U,V/
p = Point(1,z=2 Can mix two
approaches
10/23/14 Classes 27

