10/23/14

Recall: Classes are Types for Objects

¢ Classes are how we add
new types to Python

* Values must have a type
= An object is a value
= Object type is a class

Classes
* Point
* RGB
 Turtle
* Window

Recall: Objects can have Methods

* Method: function tied to object
Function call:
<function-name>(<arguments>)
Method call:
<object-variable>.<function-call>

= Use of a method is a method call

* Example: p.distanceTo(q)
= Both p and q act as arguments
= Very much like distanceTo(p, q)

¢ Methods (often) in class folders

plies] g [ae]

Name Resolution for Objects

e (object) {name) means P q

= Go the folder for object id3 id4

= Find attribute/method name

= If missing, check class folder
= If not in either, raise error
* For most Python objects
= Attributes are in object folder
= Methods are in class folder
* Rules can be broken...
(but not in this class)

Goes inside a
module, just

The Class Definition

like a function
definition.

—
keyword class
Beginning of a
class definition

class <class-name>(object): Do not forget the colon!

"""Class specification"""

Specification
(similar to one
for a function)

to define
methods
to define

variables

more on this later

...but not often used

<any other statements also allowed>

<function definitions>

<assignment statements>

class Example(object):
"""The simplest possible class.
pass

o Python creates

after reading the
class definition

Instances and Attributes

* Assignments add object attributes

. . el id2

= <object>.<att> = <expression> id2

= Example: e.b = 42
. . .

Assignments can add class attributes b

- <L'|il\\>.<LHl> = <L‘\])ll‘\\l\\ll>

= Example: Example.a = 29 a
* Objects can access class attributes

= Example: print e.a

= But assigning it creates object attribute

= Example: e.a =10

Rule: check object first, then class

Invariants

* Properties of an attribute that must be true
* Works like a precondition:

= If invariant satisfied, object works properly

= If not satisfied, object is “corrupted”
* Examples:

= Point class: all attributes must be floats

= RGB class: all attributes must be ints in 0..255

* Purpose of the class specification

The Class Specification

class Worker(object):
"""An instance is a worker in an organization. Nioe

Instance has basic worker info, but no salary information.
ATTRIBUTES:

Iname: Worker’s last name. [str]
Attribute | SSD: Social security no. [int in 0..999999999]

Name boss: Worker's boss. [Worker, or None if no boss]

10/23/14

Method Definitions

* Looks like a function def
= But indented inside class
= The first parameter

is always called self

* In a method call:

= Parentheses have one less
argument than parameters

= The object in front is
passed to parameter self

* Example: a.distanceTo(b)

class Point(object):

""Instances are points in 3d space
x: x coord [float]
¥: y coord [float]
2: z coord [float]

def distanceTo(self,q):

"""Returns: dist from self to q
Precondition: q a Point"""
assert type(q) == Point
sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**2 +
(self.z-q.z)**R)
return math.sqrt(sqredst)

Methods Calls

class Point(object):
"""Instances are points in 3d space

* Example: a.distanceTo(b)

¢ ‘ a ‘ b ‘ a3 ‘ x: x coord [float]
id3 y: y coord [float]
z: z coord [float] ™"

def distanceTo(self,q):
"""Returns: dist from self to q
Precondition: q a Point"""
assert type(q) == Point
sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**2 +
(self.z-q.2)**R)
return math.sqrt(sqrdst)

distanceTo

Special Method: __init__

w = Worker('Obama/, 1234, None)

‘ [Called by the constructor]

def __init__(self, n, s, b):
"""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.

self.lname = n

self.ssn = s

self.boss = b

Aside: The Value None

* The boss field is a problem.
= boss refers to a Worker object

var us
vaz | _ias_|

= Some workers have no boss

= Or maybe not assigned yet
(the buck stops there)

i
X
y
¢ Solution: use value None z

= None: Lack of (folder) name
id6

= Will reassign the field later!

var3| None Point

= There is no name in var3 y
= Which Point to use? z

* Be careful with None values

= var3.x gives error!

Making Arguments Optional

* We can assign default values
to __init__ arguments
= Write as assignments to
parameters in definition
= Parameters with default
values are optional
* Examples:
= p = Point() #(0,0,0)
= p="Point(1,2,3) # (1,3,3)
= p = Point(1,2) #(1,2,0)
= p = Point(y=3) #(0,3,0)
= p="Point(1,z2=R) # (1,0,2)

class Point(object):
"""Instances are points in 3d space
x: x coord [float]
¥: y coord [float]
2: z coord [float]

def __init__(self,x=0,y=0,z=0):
"""Initializer: makes & new Point
Precondition: x,y,z are numbers""

self.x =x

selfy=y

self.z =2z

