Lecture 15

More Recursion

Announcements for This Lecture

Prelim 1 Assignments and Labs
e Prelim 1 available * Need to be working on A4
= Pick up in Lab Section = Instructions are posted
= Solution posted in CMS = Just reading it takes a while
* Mean: 75.8, Median: 79 = Slightly longer than A3
* What are letter grades? = Problems are harder
= Way too early to tell e Lab Today: lots of practice!
= A: Could be a consultant " 4 functions are mandatory
= B: Could take 2110 = Lots of optional ones to do
= (C: Good enough to pass = Exam questions on Prelim 2

10/21/14 More Recursion

Recursion

e Recursive Definition:
A definition that 1s defined in terms of itself
e Recursive Function:

A function that calls itself (directly or indirectly)

e Powerful programming tool
= Want to solve a difficult problem
= Solve a simpler problem instead

* Goal of Recursion:
Solve original problem with help of simpler solution

10/21/14 More Recursion

Example: Reversing a String

* Precise Specification:

= Returns: reverse of s

* Solving with recursion ;

= Suppose we can reverse
a smaller string
(e.g.less one character) @~ —-----—--—-—————————-

Hlie|1l|1]|o]!

= Can we use that solution H
to reverse whole string?

e Often easy to understand
first without Python

= Then sit down and code

10/21/14 More Recursion 4

Example: Reversing a String

* Precise Specification:

= Returns: reverse of s

* Solving with recursion ;

= Suppose we can reverse
a smaller string
(e.g.less one character) @~ —-----—--—-—————————-

Hlie|1l|1]|o]!

= Can we use that solution H
to reverse whole string?

e Often easy to understand
first without Python

= Then sit down and code

10/21/14 More Recursion 5

Example: Reversing a String

* Precise Specification:

= Returns: reverse of s

* Solving with recursion ;

= Suppose we can reverse
a smaller string
(e.g.less one character) @~ —-----—--—-—————————-

Hlie|1l|1]|o]!

= Can we use that solution Hllel1l1lol
to reverse whole string?
e Often easy to understand ;
first without Python

= Then sit down and code

10/21/14 More Recursion 6

Example: Reversing a String

* Precise Specification:

= Returns: reverse of s

* Solving with recursion ;

= Suppose we can reverse
a smaller string
(e.g.less one character) @~ —-----—--—-—————————-

Hlie|1l|1]|o]!

= Can we use that solution 111
to reverse whole string?

* Often easy to understand ;

first without Python

= Then sit down and code

10/21/14 More Recursion 7

Example: Reversing a String

def reverse(s): '
"""Returns: reverse of s Hitell|1l]jo]!

Precondition: s a string""" 3

{sis empty}

if s =="; Lo l[l]e

- return s
1. Precise specification?

{ s at least one char } 2. Base case: correct?

(reverse of s[1:])+s[0] 3. Recursive case:

return reverse(s[1:D+s[0] progress to termination?
4. Recursive case: correct?

10/21/14 More Recursion

Example: Palindromes

e String with = 2 characters 1s a palindrome 1if:
" its first and last characters are equal, and
* the rest of the characters form a palindrome

 Example:

/——- have to be the same \
AMANAPL ANACANAILPANAMA

has to be a palindrome
* Precise Specification:

def ispalindrome(s):
"""Returns: True if s is a palindrome™""

10/21/14 More Recursion

Example: Palindromes

e String with = 2 characters 1s a palindrome 1if:
" its first and last characters are equal, and
* the rest of the characters form a palindrome

® RecurSive FunCtion: Recursive
def ispalindrome(s): Definition
"""Returns: True if s is a palindrome™""
if len(s) < 2:

Base case

return True

// { s has at least two characters } |Recursive case
return s[0] == s[-1] and ispalindrome(s[1:-1])

10/21/14 More Recursion 10

Example: Palindromes

e String with = 2 characters 1s a palindrome 1if:

= its first and last characters are ¢ 1. Precise specification?
2. Base case: correct?

3. Recursive case:

e Recursive Function: progress to termination?
4. Recursive case: correct?

= the rest of the characters form

def ispalindrome(s):

"""Returns: True if s is a palindrome™""
if len(s) < 2:
return True

Base case

// { s has at least two characters } |Recursive case
return s[0] == s[-1] and ispalindrome(s[1:-1])

10/21/14 More Recursion 11

Example: More Palindromes

def ispalindrome?(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < &:
return True

// { s has at least two characters }
return (equals_ignore_case(s[0],s[—1])
and ispalindrome?(s[1:-1]))

10/21/14 More Recursion

12

Example: More Palindromes

def ispalindrome?(s):

"""Returns: True if s is a palindrome
Case of characters is ignored.[""
if len(s) < &:

~ return True

// { s has at least two characters }

Precise Specification

return { equals_ignore_case(s[0],s[-1])

10/21/14 More Recursion

and ispalindrome?(s[1:-1]))

13

Example: More Palindromes

def ispalindrome?(s):

"""Returns: True if s is a palindrome
Case of characters is ignored.[""
if len(s) < &:

~ return True

// { s has at least two characters }

Precise Specification

return { equals_ignore_case(s[0],s[-1])

def equals_ignore_case (a, b):

return a.upper() == b.upper()

10/21/14 More Recursion

and ispalindrome?(s[1:-1]))

"""Returns: True if a and b are same ignoring case™""

14

Example: More Palindromes

def ispalindromed(s):
"""Returns: True if s is a palindrome

Case of characters and non-letters ignored."™"

return ispalindrome2(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed"""
ifs=="
return s
use string.letters to isolate letters

Use helper functions!

* Often easy to break a
problem into two

e (Can use recursion more
than once to solve

return (s[0]+depunct(s[1:]) if s[O] in string.letters

else depunct(s[1:]))

10/21/14 More Recursion

15

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

data

10/21/14 More Recursion

16

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P

10/21/14 More Recursion 17

Recursion is form of Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P

Combine Answer!
10/21/14 More Recursion 18

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1

5 341267

10/21/14 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1
5 341267
commafy
341,267

10/21/14 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1
5 341267

commafy
5 341,267

10/21/14 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1
5 341267
commafy
5 , || 341,267
A
10/21/14 Always? When? More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 2677
commafy
5 , || 341,267
A
10/21/14 Always? When? More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 2677
commafy commafy
5101, || 341,267 5341
A
10/21/14 Always? When? More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 2677
commafy commafy
S|, || 341,267 5,341 2677
A
10/21/14 Always? When? More Recursion

25

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,541,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 2677
commafy commafy
S|, || 341,267 5341 (| , || 267
A A
10/21/14 Always? When? More Recursion Always!

26

How to Break Up a Recursive Function?

def commafy(s):
e.8. commafy('6341267') = '5,641,267"

No commas if too few digits.
if len(s) <= &:
- return s

Base case

Add the comma before last 3 digits
return commafy(s[:-3]) +',' + 8[-&:]

10/21/14 More Recursion

"""Returns: string with commas every & digits

Precondition: s represents a non-negative int""

Recursive case

27

How to Break Up a Recursive Function?

def exp(b, ¢)
"""Returns: b°
Precondition: b & float, ¢ = 0 an int™"

Approach 1 Approach 2
12256 = 12 x (1225%) 1225 = (12128)) x (12124
Recursive Recursive | | Recursive
b =b x (b¢l) b¢ = (bxb)“? if c even

10/21/14 More Recursion 28

Raising a Number to an Exponent

Approach 1 Approach 2
def exp(b, ¢) def exp(b, ¢)
"""Returns: b° """Returns: b°
Precondition: b a float, Precondition: b a float,
¢ >0 an int"" ¢ >0 an int""”
#bVis 1 if c==0:
if c ==0: - return 1
| return 1 #c>0
ifc % 2 ==0:
b¢ = b(b°) return exp(b¥b,c/2)
return b*exp(b,c-1)
return b*exp(b*b,c/2)

10/21/14 More Recursion 29

Raising a Number to an Exponent

def exp(b, ¢) c # of calls
"""Returns: b° 0 0
Precondition: b a float, 1 1
¢ =0 an int""” 2 2
#bVis 1 4 3
if c ==0: 8 4
return 1 16 5
32 6
#c>0 on n+1
ifc % 2==0:
return exp(b*b,c/2) 39768 is 215
b3276% needs only 215 calls!
return b*exp(b*b,c/2)

10/21/14 More Recursion 30

Recursion and Objects

e (Class Person (person.py)

Objects have 3 attributes

name: String

mom: Person (or None)
dad: Person (or None)

e Represents the “family tree”

Goes as far back as known

Attributes mom and dad
are None if not known

e (Constructor: Person(n,m,d)

10/21/14

Or Person(n) if no mom, dad

79? Eva Dan Heather
John Sr. || Pamela 777777
John Jr. Jane Robert Ellen

N/

John III

More Recursion

~.

N/

Alice

John IV

Recursion and Objects

def num_ancestors(p):
""Returns: num of known ancestors

Pre: p is a Person™"

Base case
No mom or dad (no ancestors)

Recursive step

Has mom or dad

Count ancestors of each one
(plus mom, dad themselves)
Add them together

10/21/14

79? Eva Dan Heather
John Sr. || Pamela 777777
John Jr. Jane Robert Ellen

N/

John III

N/

Alice

~.

John IV

e

11 ancestors

More Recursion

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person""
Base case
if p.mom == None and p.dad == None:
return O

Recursive step
moms =0
if not p.mom == None:

moms = 1+num_ancestors(p.mom)
dads =0
if not p.dad== None:

dads = 1+num_ancestors(p.dad)
return moms+dads

10/21/14

79? Eva Dan Heather
John Sr. || Pamela 777777
John Jr. Jane Robert Ellen

N/

John III

e

~.

N/

Alice

John IV

11 ancestors

More Recursion

Space Filling Curves

o)

Starts
Here

10/21/14

Challenge

* Draw a curve that
= Starts in the left corner
* Ends in the right corner
= Touches every grid point

= Does not touch or cross

S itself anywhere
()« Useful for analysis of
Ends 2-dimensional data
Here
More Recursion 34

Hilbert’s Space Filling Curve

Hilbert(1):

211

10/21/14 More Recursion

Hilbert(2):

[

Hilbert(n):

H(n-1) H(n-1)
down down
_ = =
& 5 & b
— - E/ ‘o

35

Hilbert’s Space Filling Curve

Basic Idea

e (Gi1ven a box | | M

e Draw 2°x2n

grid in box

n

* Trace the curve

eni s

(]
03
]
]
e

(]

dps 8

FaEnGa By
U

facdmy

3

[\

]

=

B
JbSeacoeate
Blaeatan

* Asn goes to o,

ncal

T
JUN
nEoo
©
963 foeps
n 9

curve fills box

gakes
[raleH
WWE?W

DR

G
racy

dn8ehl

HB5HGa

S ¥3g UaLy pou 3Gy L
S -] L
g) o
U

u25upg

enbe5d

RS SH at

[
GdG
Senbenaen
25
al2s

10/21/14 More Recursion

-
=

on

