Example: Reversing a String

10/19/14

Precise Specification:
= Returns: reverse of s

Solving with recursion 3
= Suppose we can reverse
a smaller string 'H"H
(e.g. less one character)
= Can we use that solution Hnnu.
to reverse whole string?
Often easy to understand

first without Python
= Then sit down and code

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string""
{sis empty}

ifg=="

| return s

{ s at least one char }
(reverse of s[1:])+s[0]
return reverse(s[1:1)+s[0]

R S

Hﬂl
e[[1]e]

1. Precise specification?

2. Base case: correct?

3. Recursive case:
progress to termination?

4. Recursive case: correct?

Example: Palindromes

String with > 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome

Example:
have to be the same

N
AMANLELANACANLLEANANY A
has to be a palindrome
Precise Specification:
def ispalindrome(s):
"""Returns: True if s is a palindrome"""

Example: Palindromes

String with = 2 characters is a palindrome if:

= its first and last characters are equal, and

= the rest of the characters form a palindrome

def ispalindrome(s):

Recursive Function:

Recursive
Definition

""Returns: True if s is a palindrome""

if len(s) < &:

| return True

// { s has at least two characters }

return s[0] == s[-1] and ispalindrome(s[1:-1])

Example: More Palindromes

def ispalindrome&(s):

""Returns: True if s is a palindrome
| Case of characters is ignored4|””‘

Example: More Palindromes

if len(s) < &:

| return Trus ’Precise Specification

// { s has at least two characters
return { equals_ignore_case(s[0],s[-1])

and ispalindrome2(s[1:-1]))

def equals_ignore_case (a, b):

""Returns: True if a and b are same ignoring case""
return a.upper() == b.upper()

def ispalindrome3(s):

"""Returns: True if s is a palindrome
Case of characters and non-letters ignored."""

def depunct(s):

ifs=="
| return s

else deblank(s[1:]))

return ispalindrome2(depunct(s))

use string.letters to isolate letters
return (s[0]+deblank(s[1:]) if s[0] in string.letters

"""Returns: s with non-letters removed""

Use helper functions!

* Often easy to break a
problem into two

* Can use recursion more
than once to solve

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267") = '5,341,267'
Precondition: s represents a non-negative int""

Approach 1

commafy commafy

[s][J[par267 L]

Approach 2

341267 5341 267

[
[N}
!

10/19/14

How to Break Up a Recursive Function?

def exp(b, ¢)
"""Returns: b°
Precondition: b a float, ¢ > 0 an int"""

Approach 1 Approach 2

be=bx (be)

Recursive | | Recursive

be = (bxb)“2 if ¢ even

Recursion and Objects

¢ Class Person (person.py)
= Objects have 3 attributes
= name: String

John Sr. || Pamela 7?77
= mom: Person (or None) - - N

= dad: Person (or None)

|John]r.| | Jane | |R0ben| | Ellen |

* Represents the “family tree”
= Goes as far back as known

= Attributes mom and dad
are None if not known

¢ Constructor: Person(n,m,d)

¢ Or Person(n) if no mom, dad

Recursion and Objects

def num_ancestors(p):

"""Returns: num of known ancestors

(o]
Pre: p is a Person'

Base case
John Sr. || Pamela 7 M
if p.mom == None and p.dad == None: - -
return 0 \4

[oms] [T] [Roea] [Eten |

Recursive step

moms =0

if not p.mom == None:

\ moms = 1+num_ancestors(p.mom)
dads =0

if not p.dad== None:

‘ dads= 1+num_ancestors(p.dad)
return moms+dads

Hilbert’s Space Filling Curve

on Hilbert(1):]_]
Hilbert(2):
on
Hilbert(n): Hn-1) H(n-1)
down down
_z <=
SREL

Hilbert’s Space Filling Curve

¢ Given a box
e Draw 2"x2"
i
SphE

Basic Idea

grid in box

¢ Trace the curve

* Asn goes to %,
curve fills box

