
Recursion	

Lecture 14 	
	

Announcements for Today	

Prelim 1	

•  Tonight at 7:30-9pm	

§  A–Gr (Ives 305)	

§  Gu-Z (Statler Auditorium)	

•  Graded by Noon on Fri	

§  Scores will be in CMS	

§  In time for drop date	

•  Make-ups were e-mailed	

§  If not, e-mail Jessica NOW	

Other Announcements	

•  Reading: 5.8 – 5.10	

•  Assignment 3 now graded	

§  Mean 94, Median 99	

§  Time: 7 hrs, StdDev: 4 hrs	

§  Typical for this assignment	

•  Survey for A3 still active	

•  Assignment 4 posted Saturday	

§  Uses material from today	

§  Due two weeks from Sun	

10/16/14	
 Recursion	
 2	

Recursion	

•  Recursive Definition: 	

	
A definition that is defined in terms of itself	

•  Recursive Function: 	

	
A function that calls itself (directly or indirectly)	

•  Recursion: If you get the point, stop;���
	
 	
 otherwise, see Recursion	

•  Infinite Recursion: See Infinite Recursion	

10/16/14	
 Recursion	
 3	

A Mathematical Example: Factorial	

•  Non-recursive definition:	

n! = n × n-1 × … × 2 × 1 	

 = n (n-1 × … × 2 × 1)	

•  Recursive definition:	

n! = n (n-1)!	

0! = 1	

10/16/14	
 Recursion	
 4	

for n ≥ 0	
 Recursive case	

Base case	

What happens if there is no base case?	

Factorial as a Recursive Function	

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)
 	

•  n! = n (n-1)!	

•  0! = 1	

10/16/14	
 Recursion	
 5	

What happens if there is no base case?	

Recursive case	

Base case(s)	

Example: Fibonnaci Sequence	

•  Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...	

 a0 a1 a2 a3 a4 a5 a6	

§ Get the next number by adding previous two	

§ What is a8?	

	

10/16/14	
 Recursion	
 6	

A: a8 = 21	

B: a8 = 29	

C: a8 = 34	

D: None of these.	

Example: Fibonnaci Sequence	

•  Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...	

 a0 a1 a2 a3 a4 a5 a6	

§ Get the next number by adding previous two	

§ What is a8?	

•  Recursive definition:	

§  an = an-1 + an-2 	
Recursive Case	

§  a0 = 1 	
 	
 	
Base Case	

§  a1 = 1 	
 	
 	
(another) Base Case	

10/16/14	
 Recursion	
 7	

Why did we need two base cases this time?	

Fibonacci as a Recursive Function	

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
 fibonacci(n-2))

10/16/14	
 Recursion	
 8	

Recursive case	

Base case(s)	

What happens if we forget the base cases?	

Fibonacci as a Recursive Function	

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
 fibonacci(n-2))

•  Function that calls itself	

§  Each call is new frame	

§  Frames require memory	

§  ∞ calls = ∞ memory	

10/16/14	
 Recursion	
 9	

n	

fibonacci	
 3	

5	

n	

fibonacci	
 1	

4	
 n	

fibonacci	
 1	

3	

Fibonacci: # of Frames vs. # of Calls	

•  Fibonacci is very inefficient.	

§  fib(n) has a stack that is always ≤ n	

§  But fib(n) makes a lot of redundant calls	

fib(5)	

fib(4)	

fib(3)	
 fib(2)	

fib(2)	
 fib(1)	
 fib(0)	

fib(0)	

fib(1)	

fib(1)	
 10	
Recursion	

fib(3)	

fib(2)	
 fib(1)	

fib(0)	
fib(1)	

Blue line = ���
call stack	

10/16/14	

Recursion as a Programming Tool	

•  Later we will see iteration (loops)	

•  But recursion is often a good alternative	

§ Particularly over sequences (lists, strings)	

•  Some languages only have recursion	

§ “Functional languages”; topic of CS 3110	

10/16/14	
 Recursion	
 11	

A4: Recursion to solve Scrabble	

String: Two Recursive Examples	

def length(s):
 """Returns: # chars in s"""
 # {s is empty}
 if s == '':
 return 0

 # { s at least one char }
 return 1 + length(s[1:])

def num_es(s):
 """Returns: # of ‘e’s in s"""
 # {s is empty}
 if s == '':
 return 0

 # { s at least one char }
 return ((1 if s[0] == 'e'
 else 0) +
 num_es(s[1:]))

10/16/14	
 Recursion	
 12	

Imagine len(s)
does not exist	

Two Major Issues with Recursion	

•  How are recursive calls executed?	

§ We saw this with the Fibonacci example	

§ Use the call frame model of execution	

•  How do we understand a recursive function ���
(and how do we create one)?	

§ You cannot trace the program flow to understand

what a recursive function does – too complicated	

§ You need to rely on the function specification	

10/16/14	
 Recursion	
 13	

How to Think About Recursive Functions	

1.  Have a precise function specification.	

2.  Base case(s): 	

§  When the parameter values are as small as possible 	

§  When the answer is determined with little calculation.	

3.  Recursive case(s): 	

§  Recursive calls are used. 	

§  Verify recursive cases with the specification	

4.  Termination: 	

§  Arguments of calls must somehow get “smaller” 	

§  Each recursive call must get closer to a base case	

10/16/14	
 Recursion	
 14	

Understanding the String Example	

def num_es(s):
 """Returns: # of ‘e’s in s"""
 # {s is empty}
 if s == '':
 return 0

 # { s at least one char }
 return ((1 if s[0] == 'e' else 0) �

 + num_es(s[1:]))

•  Break problem into parts	

	

•  Solve small part directly	

s
0 1 len(s)
H ello World!

Recursive case	

Base case	

number of e’s in s = ���
 number of e’s in s[0]���
	
+ number of e’s in s[1:]	

	

number of e’s in s = ���
 (1 if s[0] == 'e' else 0)
	
+ number of e’s in s[1:]	

10/16/14	
 Recursion	
 15	

Understanding the String Example	

•  Step 1: Have a precise specification	

 def num_es(s):
 """Returns: # of ‘e’s in s"""
 # {s is empty}
 if s == '':
 return 0

 # { s at least one char }
 # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]
 return (1 if s[0] == 'e' else 0) + num_es(s[1:])	

•  Step 2: Check the base case	

§  When s is the empty string, 0 is returned.	

§  So the base case is handled correctly.	

Recursive case	

Base case	

“Write” your return
statement using the

specification	

10/16/14	
 Recursion	
 16	

Understanding the String Example	

•  Step 3: Recursive calls make progress toward termination	

 def num_es(s):
 """Returns: # of ‘e’s in s"""
 # {s is empty}
 if s == '':
 return 0

 # { s at least one char }
 # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]
 return (1 if s[0] == 'e' else 0) + num_es(s[1:])	

•  Step 4: Recursive case is correct	

§  Just check the specification	

argument s[1:]	

parameter s	

argument s[1:] is smaller than	

parameter s, so there is progress	

toward reaching base case 0	

10/16/14	
 Recursion	
 17	

Exercise: Remove Blanks from a String	

1.  Have a precise specification	

def deblank(s):�

 """Returns: s but with its blanks removed"""

2.  Base Case: the smallest String s is ''.	

if s == '':�

 return s

3.  Other Cases: String s has at least 1 character.	

return (s[0] with blanks removed) + (s[1:] with blanks removed)

10/16/14	
 Recursion	
 18	

('' if s[0] == ' ' else s[0])

What the Recursion Does	

a	
 b	
 c	
deblank	

10/16/14	
 Recursion	
 19	

What the Recursion Does	

a	
 b	
 c	
deblank	

a	
 b	
 c	
deblank	

10/16/14	
 Recursion	
 20	

What the Recursion Does	

a	
 b	
 c	

a	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

10/16/14	
 Recursion	
 21	

What the Recursion Does	

a	
 b	
 c	

a	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

10/16/14	
 Recursion	
 22	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 23	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 24	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 25	
c	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 26	
c	
 c	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 27	
c	
 c	

c	
✗	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 28	
c	
 c	

c	
✗	

c	
b	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 29	
c	
 c	

c	
✗	

c	
b	

c	
b	
✗	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 30	
c	
 c	

c	
✗	

c	
b	

c	
b	
✗	

c	
b	
a	

What the Recursion Does	

a	
 b	
 c	

a	

b	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 31	
c	
 c	

c	
✗	

c	
b	

c	
b	
✗	

c	
b	
a	

c	
b	
a	
✗	

What the Recursion Does	

a	
 b	
 c	

a	

b	

c	
 c	

c	

c	
b	

c	
b	

c	
b	
a	

c	
b	
a	

c	
b	
a	

✗	

✗	

✗	

deblank	

a	
 b	
 c	
deblank	

b	
 c	
deblank	

b	
 c	
deblank	

c	
deblank	

c	
deblank	

10/16/14	
 Recursion	
 32	

Exercise: Remove Blanks from a String	

def deblank(s):
 """Returns: s with blanks removed"""
 if s == '':
 return s

 # s is not empty
 if s[0] is a blank:
 return s[1:] with blanks removed

 # s not empty and s[0] not blank
 return (s[0] + �

 s[1:] with blanks removed)
	

•  Sometimes easier to break ���
up the recursive case	

§  Particularly om small part	

§  Write recursive case as a

sequence of if-statements	

•  Write code in pseudocode	

§  Mixture of English and code	

§  Similar to top-down design	

•  Stuff in red looks like the
function specification!	

§  But on a smaller string	

§  Replace with deblank(s[1:])

10/16/14	
 Recursion	
 33	

Exercise: Remove Blanks from a String	

def deblank(s):
 """Returns: s with blanks removed"""
 if s == '':
 return s

 # s is not empty
 if s[0] in string.whitespace:
 return deblank(s[1:])

 # s not empty and s[0] not blank
 return (s[0] +�

 deblank(s[1:]))
	

•  Check the four points:	

1.  Precise specification?	

2.  Base case: correct?	

3.  Recursive case: progress

toward termination?	

4.  Recursive case: correct?	

10/16/14	
 Recursion	
 34	

Expression: x in thelist
returns True if x is a
member of list thelist
(and False if it is not)	

Next Time: A Lot of Examples	

10/16/14	
 Recursion	
 35	

