Recursion

* Recursive Definition:
A definition that is defined in terms of itself
* Recursive Function:
A function that calls itself (directly or indirectly)

* Recursion: If you get the point, stop;
otherwise, see Recursion

¢ Infinite Recursion: See Infinite Recursion

10/15/14

A Mathematical Example: Factorial

¢ Non-recursive definition:
nl=nxn-lx..x2x1
=n(-1x...x2x1)

¢ Recursive definition:
n!=n(-1)! forn=0 Recursive case
0ol=1 Base case

What happens if there is no base case?

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8,13, ...
a, a, a, ay a, as dag
= Get the next number by adding previous two
= What is ag?
* Recursive definition:

"a,=a,,+a,, Recursive Case
"a,=1 Base Case
"a =1 (another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacei(n): * Function that calls itself
"""Returns: Fibonacci no. a, = Each call is new frame
Precondition: n > 0 an ing"" = Frames require memory
ifn<=1: = % calls = % memory
| returnl
[ibonacei | [1]
return (fibonacei(n-1)+ n[s
fibonacei(n-R))

fibonacci | [1] [fibonacei | [1]
n[4] n

Fibonacci: # of Frames vs. # of Calls

* Fibonacci is very inefficient.
= fib(n) has a stack that is always <n
= But fib(n) makes a lot of redundant calls

Blue line =
call stack

String: Two Recursive Examples

def length(s): def num_es(s):

"""Returns: # chars in s"" """Returns: # of ‘e’s in s

s is empty} # {s is empty}

ifg==": ifs=="

| return 0 | return 0

{ s at least one char } # { s at least one char }

return 1 + length(s[1:]) return ((1 if s[0] == "¢’

else 0) +

Imagine len(s) num_es(s[1:])

does not exist

How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):
= When the parameter values are as small as possible
= When the answer is determined with little calculation.
3. Recursive case(s):
= Recursive calls are used.
= Verify recursive cases with the specification
4. Termination:
= Arguments of calls must somehow get “smaller”

= Each recursive call must get closer to a base case

Understanding the String Example

def num_es(s): * Break problem into parts
"""Returns: # of ‘e’s in s"""
(s is empty) number of e’s in s =

number of e’s in s[0]
+ number of e’s in s[1:]

ot

{ s at least one char }
return ((1 if s[0] == 'e' else 0)

Solve small part directly

+ num_es(s[1:]) number of e’s in s =
(1 if s[0] ="e' else 0)
+ number of e’s in s[1:]
01 len(s)

s ‘H‘ ello World! ‘

Understanding the String Example

e Step 1: Have a precise specification
def num_es(s):

""Returns: # of ‘¢’s in s"" “Write” your return

{s is empty} statement using the

g -
fg==" specification

| return O

{ s at least one char }

(# return # of ‘e’s in s[0]+# of ‘e’s in s[l:]) Recursive case

return (1 if s[0] == 'e' else 0) + num_es(s[1:])

e Step 2: Check the base case
= When s is the empty string, O is returned.
= So the base case is handled correctly.

Understanding the String Example

* Step 3: Recursive calls make progress toward termination
def num_es(s): 4—‘ parameter s

""Returns: # of ‘e’s in s"" argument s[1:] is smaller than

{s is empty} parameter s, so there is progress
ifg==":

toward reaching base case 0

| return O

{ s at least one char } argument s[1:]

return # of ‘e’s in s[0]+# of ‘e’s in s[1:]
return (1 if s[0] == 'e' else 0) + num_es(s[1:])
* Step 4: Recursive case is correct

= Just check the specification

Exercise: Remove Blanks from a String

1. Have a precise specification
def deblank(s):
‘ """Returns: s but with its blanks removed""
2. Base Case: the smallest String s is ".
ifg==":
\ return s
3. Other Cases: String s has at least 1 character.

return (s[0] with blanks removed) + (s[1:] with blanks removed)

(" if s[0] ==""else s[0])

Exercise: Remove Blanks from a String

def deblank(s): * Sometimes easier to break
"""Returns: s with blanks removed"" up the recursive case
ifg==":

= Particularly om small part

| returns = Write recursive case as a
sequence of if-statements

s is not empty

if s[0] is a blank:

‘ return s[1:] with blanks removed

e Write code in pseudocode
= Mixture of English and code
= Similar to top-down design
s not empty and s[0] not blank e Stuff in red looks like the
return (s[0] + function specification!
s[1:] with blanks removed)

= But on a smaller string
= Replace with deblank(s[1:])

