
Objects	

Lecture 6	

Announcements for this Lecture	

Last Call	

•  Quiz: About the Course	

•  Take it by tomorrow	

•  Also remember survey	

Assignment 1	

•  Assignment 1 is live	

§  Posted on web page	

§  Due Thur, Sep. 18th	

§  Due in place of Lab 4	

•  Lab 3 will help a lot	

§  Testing is a major part 	

§  Try to finish it first	

§  But start this Saturday!	

9/2/12	

 Objects	

 2	

One-on-One Sessions	

•  Still ongoing: 1/2-hour one-on-one sessions	

§  To help prepare you for the assignment	

§  Primarily for students with little experience	

•  There are still some spots available	

§  Sign up for a slot in CMS	

•  Will keep running after September 18	

§ Will open additional slots after the due date	

§ Will help students revise Assignment 1	

9/2/12	

 Objects	

 3	

Type: Set of values and the operations on them	

•  Type int:	

§  Values: integers 	

§  Ops: +, –, *, /, %, **	

•  Type float:	

§  Values: real numbers	

§  Ops: +, –, *, /, **	

•  Type bool:	

§  Values: True and False	

§  Ops: not, and, or	

•  Type str:	

§  Values: string literals	

•  Double quotes: "abc"

•  Single quotes: 'abc'

§  Ops: + (concatenation)	

9/2/12	

 Objects	

 4	

Are the the only	

types that exist?	

Type: Set of values and the operations on them	

•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	

•  What if have a lot of points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	

•  How about a single variable���
that represents a point?	

9/2/12	

 Objects	

 5	

x 2.0

y 3.0

z 5.0

•  Can we stick them
together in a “folder”?	

•  Motivation for objects	

	

	

	

	

	

	

Type: Set of values and the operations on them	

•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	

•  What if have a lot of points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	

•  How about a single variable���
that represents a point?	

9/2/12	

 Objects	

 6	

x 2.0

y 3.0

z 5.0

Objects: Organizing Data in Folders	

•  An object is like a manila folder	

•  It contains other variables	

§ Variables are called attributes	

§  These values can change	

•  It has an ID that identifies it	

§ Unique number assigned by Python���

(just like a NetID for a Cornellian)	

§  Cannot ever change	

§ Has no meaning; only identifies	

9/2/12	

 Objects	

 7	

	

	

	

	

	

	

id1	

x 2.0

y 3.0

z 5.0

Unique tab	

identifier	

Classes: Types for Objects	

•  Values must have a type	

§  An object is a value	

§  Object type is a class	

•  Modules provide classes 	

§  Will show how later	

•  Example: tuple3d

§  Part of CornellExtensions
§  Just need to import it
§  Classes: Point, Vector

9/2/12	

 Objects	

 8	

	

	

	

	

	

	

id1	

x 2.0

y 3.0

z 5.0

Point	

class name	

Constructor: Function to make Objects	

•  How do we create objects?	

§  Other types have literals	

§  Example: 1, "abc", true 	

§  No such thing for objects	

•  Constructor Function: 	

§  Same name as the class	

§  Example: Point(0,0,0)

§  Makes an object (manila folder)	

§  Returns folder ID as value	

•  Example: p = Point(0, 0, 0)

§  Creates a Point object	

§  Stores object’s ID in p	

9/2/12	

 Objects	

 9	

id2	

p	

Variable	

stores ID	

not object	

	

instantiated	

object���
	

	

	

	

	

	

	

id2	

x 0.0

y 0.0

z 0.0

Point	

Constructors and Modules	

>>> import tuple3d

>>> p = tuple3d.Point(0,0,0)

>>> id(p)

9/2/12	

 Objects	

 10	

id2	

p	

	

	

	

	

	

	

id2	

x 0.0

y 0.0

z 0.0

Point	

Need to import module
that has Point class.	

Constructor is function.	

Prefix w/ module name.	

Shows the ID of p.	

Actually a ���
big number	

Object Variables	

•  Variable stores object name	

§  Reference to the object 	

§  Reason for folder analogy	

•  Assignment uses object name	

§  Example: q = p	

§  Takes name from p	

§  Puts the name in q	

§  Does not make new folder!	

•  This is the cause of many
mistakes in this course	

9/2/12	

 Objects	

 11	

id2	

p	

	

	

	

	

	

	

id2	

x 0.0

y 0.0

z 0.0

Point	

id2	

q	

Objects and Attributes	

•  Attributes are variables ���
that live inside of objects	

§  Can use in expressions	

§  Can assign values to them	

•  Access: <variable>.<attr>

§  Example: p.x

§  Look like module variables	

•  Putting it all together	

§  p = tuple3d.Point(1,2,3)

§  p.x = p.y + p.z

9/2/12	

 Objects	

 12	

	

	

	

	

	

	

id3	

x 1.0

y 2.0

z 3.0

id3	

p	

Point	

5.0	

✗	

Exercise: Attribute Assignment	

•  Recall, q gets name in p

>>> p = tuple3d.Point(0,0,0)

>>> q = p

•  Execute the assignments:	

>>> p.x = 5.6

>>> q.x = 7.4

•  What is value of p.x?	

9/2/12	

 Objects	

 13	

id4	

p	

 id4	

q	

A: 5.6	

B: 7.4	

C: id4	

D: I don’t know	

	

	

	

	

	

	

id4	

x 0.0

y 0.0

z 0.0

Point	

Exercise: Attribute Assignment	

•  Recall, q gets name in p

>>> p = tuple3d.Point(0,0,0)

>>> q = p

•  Execute the assignments:	

>>> p.x = 5.6

>>> q.x = 7.4

•  What is value of p.x?	

9/2/12	

 Objects	

 14	

id4	

p	

 id4	

q	

A: 5.6	

B: 7.4	

C: id4	

D: I don’t know	

	

	

	

	

	

	

id4	

x 0.0

y 0.0

z 0.0

Point	

5.6	

✗	

 7.4	

✗	

CORRECT	

Call Frames and Objects	

•  Mutable objects can be
altered in a function call	

§  Object vars hold names!	

§  Folder accessed by both

global var & parameter	

•  Example:	

def incr_x(q):

 q.x = q.x + 1

>>> p = Point(0,0,0)

>>> incr_x(p)

9/2/12	

 Objects	

 15	

1	

incr_x
 1	

id5	

q

Global STUFF	

Call Frame	

id5	

p

	

	

	

	

	

	

id5	

 0.0
…

Point	

x

Call Frames and Objects	

•  Mutable objects can be
altered in a function call	

§  Object vars hold names!	

§  Folder accessed by both

global var & parameter	

•  Example:	

def incr_x(q):

 q.x = q.x + 1

>>> p = Point()

>>> incr_x(p)

9/2/12	

 Objects	

 16	

id5	

p

	

	

	

	

	

	

id5	

 0.0
…

Point	

x

1	

incr_x

id5	

q

Global STUFF	

Call Frame	

✗	

 1.0	

Call Frames and Objects	

•  Mutable objects can be
altered in a function call	

§  Object vars hold names!	

§  Folder accessed by both

global var & parameter	

•  Example:	

def incr_x(q):

 q.x = q.x + 1

>>> p = Point()

>>> incr_x(p)

9/2/12	

 Objects	

 17	

id5	

p

	

	

	

	

	

	

id5	

 0.0
…

Point	

x

1	

Global STUFF	

Call Frame	

✗	

 1.0	

Methods: Functions Tied to Objects	

•  Method: function tied to object	

§  Method call looks like a function

call preceded by a variable name:	

	

⟨variable⟩.⟨method⟩(⟨arguments⟩)

§  Example: p.distanceTo(q)

§  Example: p.abs() # makes x,y,z ≥ 0	

•  Just like we saw for strings	

§  s = 'abracadabra'

§  s.index('a')

•  Are strings objects?

	

	

	

	

	

	

id3	

x 5.0

y 2.0

z 3.0

id3	

p	

Point	

9/2/12	

 Objects	

 18	

Surprise: All Values are in Objects!	

•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 2.5

>>> id(x)

•  But they are immutable	

§  Contents cannot change	

§  Distinction between value

and identity is immaterial	

§  So we can ignore the folder	

2.5	

x	

2.5

id5	

id5	

x	

float	

9/2/12	

 Objects	

 19	

Surprise: All Values are in Objects!	

•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 'foo'

>>> id(x)

•  But they are immutable	

§  No string method can alter

the contents of a string	

§  x.replace('o','y') evaluates ���

to 'fyy' but x is still 'foo'

§  So we can ignore the folder	

 'foo'
x	

'foo'

id6	

id6	

x	

includes strings	

str	

9/2/12	

 Objects	

 20	

Class Objects	

•  Use name class object to
distinguish from other values	

§  Not int, float, bool, str	

•  Class objects are mutable	

§  You can change them	

§  Methods can have effects

besides their return value	

•  Example:	

§  p = Point(3,-3,0)

§  p.clamp(-1,1)

Example: Files	

f = open('jabber.txt')

s = f.read()

f.close()

id6	

f id6

name,	

position,	

state, …	

Opens a file on your
disk; returns a file

object you can read	

file	

9/2/12	

 Objects	

 21	

Base Types vs. Classes	

Base Types	

•  Built-into Python	

•  Refer to instances as values	

•  Instantiate with literals	

•  Are all immutable	

•  Can ignore the folders	

Classes	

•  Provided by modules	

•  Refer to instances as objects	

•  Instantiate w/ constructors	

•  Can alter attributes	

•  Must represent with folders 	

9/2/12	

 Objects	

 22	

Aside: Name Resolution	

•  ⟨object⟩.⟨name⟩ means 	

§  Go the folder for object	

§  Look for attr/method name	

§  If missing, check class folder	

•  Class folder is a shared folder	

§  Only one for the whole class	

§  Shared by all objects of class	

§  Stores common features	

§  Typically where methods are	

•  Do not worry about this yet	

	

	

	

	

	

	

id3	

x 5.0
y 2.0
z 3.0

id3	

p	

Point	

__init__(x, y, z)	

distanceTo(other)	

abs()	

Point	

	

	

	

	

	

	

id4	

x 7.4
y 0.0
z 0.0

id4	

q	

Point	

9/2/12	

 Objects	

 23	

Where To From Here?	

•  Right now, just try to understand objects	

§ All Python programs use objects	

§ Most small programs use objects of classes ���

that are part of the Python Library	

•  OO Programming is about creating classes	

§  Eventually you will make your own classes	

§  Classes are the primary tool for organizing ���

more complex Python programs	

§  But we need to learn other basics first	

9/2/12	

 Objects	

 24	

A1: The Module urllib2	

•  Module urllib2 is used to read web pages	

§  Function urlopen creates a url object	

§  u = urllib2.urlopen('http://www.cornell.edu')

•  url has a method called read()	

§  Returns contents of web page	

§ Usage: s = u.read() # s is a string

9/19/13	

 Conditionals & Control Flow	

 25	

id2	

u	

 	

	

	

	

	

	

id2	

url	

