
1	

One-on-One Sessions	

•  Still ongoing: 1/2-hour one-on-one sessions	

§  To help prepare you for the assignment	

§  Primarily for students with little experience	

•  There are still some spots available	

§  Sign up for a slot in CMS	

•  Will keep running after September 18	

§ Will open additional slots after the due date	

§ Will help students revise Assignment 1	

Type: Set of values and the operations on them	

•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	

•  What if have a lot of points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	

•  How about a single variable���
that represents a point?	

x 2.0

y 3.0

z 5.0

Objects: Organizing Data in Folders	

•  An object is like a manila folder	

•  It contains other variables	

§ Variables are called attributes	

§  These values can change	

•  It has an ID that identifies it	

§ Unique number assigned by Python���

(just like a NetID for a Cornellian)	

§  Cannot ever change	

§ Has no meaning; only identifies	

	

	

	

	

	

	

id1	

x 2.0

y 3.0

z 5.0

Unique tab	

identifier	

Classes: Types for Objects	

•  Values must have a type	

§  An object is a value	

§  Object type is a class	

•  Modules provide classes 	

§  Will show how later	

•  Example: tuple3d

§  Part of CornellExtensions
§  Just need to import it
§  Classes: Point, Vector

	

	

	

	

	

	

id1	

x 2.0

y 3.0

z 5.0

Point	

class name	

Constructor: Function to make Objects	

•  How do we create objects?	

§  Other types have literals	

§  Example: 1, "abc", true 	

§  No such thing for objects	

•  Constructor Function: 	

§  Same name as the class	

§  Example: Point(0,0,0)

§  Makes an object (manila folder)	

§  Returns folder ID as value	

•  Example: p = Point(0, 0, 0)

§  Creates a Point object	

§  Stores object’s ID in p	

id2	

p	

Variable	

stores ID	

not object	

	

instantiated	

object���
	

	

	

	

	

	

	

id2	

x 0.0

y 0.0

z 0.0

Point	

Constructors and Modules	

>>> import tuple3d

>>> p = tuple3d.Point(0,0,0)

>>> id(p)

id2	

p	

	

	

	

	

	

	

id2	

x 0.0

y 0.0

z 0.0

Point	

Need to import module
that has Point class.	

Constructor is function.	

Prefix w/ module name.	

Shows the ID of p.	

Actually a ���
big number	

2	

Object Variables	

•  Variable stores object name	

§  Reference to the object 	

§  Reason for folder analogy	

•  Assignment uses object name	

§  Example: q = p	

§  Takes name from p	

§  Puts the name in q	

§  Does not make new folder!	

•  This is the cause of many
mistakes in this course	

id2	

p	

	

	

	

	

	

	

id2	

x 0.0

y 0.0

z 0.0

Point	

id2	

q	

Objects and Attributes	

•  Attributes are variables ���
that live inside of objects	

§  Can use in expressions	

§  Can assign values to them	

•  Access: <variable>.<attr>

§  Example: p.x

§  Look like module variables	

•  Putting it all together	

§  p = tuple3d.Point(1,2,3)

§  p.x = p.y + p.z

	

	

	

	

	

	

id3	

x 1.0

y 2.0

z 3.0

id3	

p	

Point	

5.0	

✗	

Call Frames and Objects	

•  Mutable objects can be
altered in a function call	

§  Object vars hold names!	

§  Folder accessed by both

global var & parameter	

•  Example:	

def incr_x(q):

 q.x = q.x + 1

>>> p = Point()

>>> incr_x(p)

id5	

p

	

	

	

	

	

	

id5	

 0.0
…

Point	

x

1	

incr_x

id5	

q

Global STUFF	

Call Frame	

✗	

 1.0	

Methods: Functions Tied to Objects	

•  Method: function tied to object	

§  Method call looks like a function

call preceded by a variable name:	

	

⟨variable⟩.⟨method⟩(⟨arguments⟩)

§  Example: p.distanceTo(q)

§  Example: p.abs() # makes x,y,z ≥ 0	

•  Just like we saw for strings	

§  s = 'abracadabra'

§  s.index('a')

•  Are strings objects?

	

	

	

	

	

	

id3	

x 5.0

y 2.0

z 3.0

id3	

p	

Point	

Surprise: All Values are in Objects!	

•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 'foo'

>>> id(x)

•  But they are immutable	

§  No string method can alter

the contents of a string	

§  x.replace('o','y') evaluates ���

to 'fyy' but x is still 'foo'

§  So we can ignore the folder	

 'foo'
x	

'foo'

id6	

id6	

x	

includes strings	

str	

Class Objects	

•  Use name class object to
distinguish from other values	

§  Not int, float, bool, str	

•  Class objects are mutable	

§  You can change them	

§  Methods can have effects

besides their return value	

•  Example:	

§  p = Point(3,-3,0)

§  p.clamp(-1,1)

Example: Files	

f = open('jabber.txt')

s = f.read()

f.close()

id6	

f id6

name,	

position,	

state, …	

Opens a file on your
disk; returns a file

object you can read	

file	

