[ecture 5

Visualizing Functions

Announcements For This Lecture

Readings Assignment 1
* See link on website: e Posted on web page
" Docstrings in Python = Due Wed, Sep. 18t

= Material 1s not in Text . Revi il ¢
evise until correc

Today’s Lab * Can work 1n pairs

: * One submission for pair
e Practice today’s lecture P

. * Link up on Piazza
 Highly recommend

doing optional part e Consultants can help

9/9/14 Visualizing Functions

One-on-One Sessions

e Starting tomorrow: 1/2-hour one-on-one sessions

* Bring computer to work with instructor, TA or consultant
* Hands on, dedicated help with Lab 2 and/or Lab 3
= To prepare for assignment, not for help on assignment

 Limited availability: we cannot get to everyone

= Students with experience or confidence should hold back

e Sign up online in CMS: first come, first served
* Choose assignment One-on-One
= Pick a time that works for you; will add slots as possible
= Can sign up starting at lpm TODAY

9/9/14 Visualizing Functions

Anatomy of a Specification

(One line description,
def greet(n): followed by blank line

"""Prints a greeting to the name n

More detail about the
function. It may be
many paragraphs.

Greeting has format 'Hello <n>!’
Followed by a conversation starter.

AN

Precondition: n is a string
representing a person’s name"""

print 'Hello '+n+'l’
print 'How are you?'

.)
Precondition specifies

assumptions we make
about the arguments

4

9/4/14 Defining Functions 4

Anatomy of a Specification

¢

‘Returns’ indicates a
def to_centigrade(x): fruitful function

f‘""Returns:]x converted to centigrade

More detail about the
function. It may be
many paragraphs.

Value returned has type float.

N

Precondition: x is a float measuring
temperature in fahrenheit"""

return 5*(x-32)/9.0

.)
Precondition specifies

assumptions we make
about the arguments

4

9/4/14 Defining Functions 5

Preconditions

e Precondition is a promise >>>to_centigrade(3<)

= If precondition is true, 0.0
the function works >>> t0_centigrade(212)
= If precondition 1s false, 100.0

no guarantees at all .
>>> t0_centigrade('32")

e Get software bugs when
8 Traceback (most recent call last):

* Function precondition is
not documented properly

File "<stdin>", line 1, in <module>
File "temperature.py", line 19 ...
= Function 18 used in ways TypeError: unsupported operand type(s)

that violates precondition for - 'str' and 'int'
[Precondition m

9/4/14 Defining Functions 6

Draw template on

How Do Functions Work? a piece of paper

* Function Frame: Representation of function call
* A conceptual model of Python

Draw parameters e Number of statement in the
as variables function body to execute next
(named boxes) e Starts with 1

function name instruction counter

parameters

local variables (later in lecture)

9/9/14 Visualizing Functions 7

Text (Section 3.10) vs. Class

Textbook This Class
to_centigrade 1
to_centigrade x=>30.0
x [50.0
Definition: Call: to_centigrade(50.0)
def to_centigrade(x):
return 5*(x-32)/9.0

9/9/14 Visualizing Functions 8

Example: to_centigrade(50.0)

1. Draw a frame for the call Initial call frame
2. Assign the argum.ent value [(before exec body)}

to the parameter (in frame)
3. Execute the function body to_centigrade 1

= Look for variables in the frame

= If not there, look for global

variables with that name x |50.0
4. FErase the frame for the call /
def to_centigrade(x): [next line to execute }

1 return 5*(x-32)/9.0

9/9/14 Visualizing Functions

Example: to_centigrade(50.0)

2. Assign the argument value
to the parameter (in frame)

1. Draw a frame for the call
return statement

Executing the }

3. Execute the function body

to_centigrade
= Look for variables in the frame

= If not there, look for global
variables with that name x|50.0 |RETURN | 50.0
4. FErase the frame for the call //
def to_centigrade(x): Return statement creates a
1 return 5*(x-32)/9.0 special variable for result

9/9/14 Visualizing Functions

Example: to_centigrade(50.0)

1. Draw a frame for the call ,
. Executing the
2. Assign the argum.ent value return statement
to the parameter (in frame)
3. Execute the function body to_centigrade
= Look for variables in the frame
= If not there, look for global /{
variables with that name x 500 RETUI? 0.0
4. FErase the frame for the call /
def to_centigrade(x): The return terminates;
1 return 5*(x-32)/9.0 no next line to execute

9/9/14 Visualizing Functions

Example: to_centigrade(50.0)

1. Draw a frame for the call

2. Assign the argument value
to the parameter (in frame)

3. Execute the function body

= Look for variables in the frame

= If not there, look for global 00{
variables with that name @ P

4. FErase the frame for the call "31

1 return 5*(x-32)/9.0

def to_centigrade(x): [But don’t actually }

crasc on an €xam

9/9/14 Visualizing Functions

12

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
|l||llswap V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> 9 =1 a |1 b |2
>>>h =2

>>> gwap(a,b)

9/9/14 Visualizing Functions

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
"""SW&p V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> 9 =1 a |1 b |2
>>>h =2
>>> swap(a,b) tmp | 1

9/9/14 Visualizing Functions

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
"""SW&p V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> g, =] a |X 2 b |2
>>>h =2
>>> gwap(a,b) tmp | 1

9/9/14 Visualizing Functions

Call Frames vs. Global Variables

 This does not work:

Global Variables
def swap(a,b):
"""SW&p V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> 9 =1 a x 2 b x 1
>>>h =2
>>> gwap(a,b) tmp | 1

9/9/14

Visualizing Functions

16

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
"""SW&p V&I’S a &a bllllll a 1 b 2

tmp = a Call Frame
2 a=">

b =tmp

>>>9,=1
>>>h =2

>>> gwap(a,b)

9/9/14 Visualizing Functions

Visualizing Frames: The Python Tutor

<< First < Back | Step 5 of 8

= def max(x,y):

if x > y:
return Xx
return y
a =1
b =2
max(a,b)
Edit code

Forward >

9/9/14

Last >>

Visualizing Functions

Frames Objects

Global frame function

max(x, y)
max

max

18

Visualizing Frames: The Python Tutor

Global

Frames Objects
- def max(x,y):
if x > y: Space Global frame function
max(x, y)
return Xx —
return y s |1
b 2
a =1
b = 2
max
max(a,b)
x |1
Edit code y |2

Call Frame

<< First < Back | Step 5 of 8 | Forward

9/9/14 Visualizing Functions 19

Limitations of the Python Tutor

* The Python Tutor 1s extremely useful
" You can see exactly what Python is doing

" You could use it to find errors in your code!

 However, the Python tutor 1s very limited
" You can only import the most basic modules

* You cannot import user-defined modules

* We need some other way to search for errors

= This 1s the motivation for code testing

9/9/14 Visualizing Functions

20

Limitations of the Python Tutor

* The Python Tutor 1s extremely useful

. YO‘CMan}’ professional software g

" Yol development tools do this 100- 4, e

 However, the Python tutor 1s very limited
" You can only import the most basic modules

* You cannot import user-defined modules

* We need some other way to search for errors

= This 1s the motivation for code testing

9/9/14 Visualizing Functions

21

Test Cases: Finding Errors

* Bug: Error in a program. (Always expect them!)
* Debugging: Process of finding bugs and removing them.

e Testing: Process of analyzing, running program, looking for bugs.

* Test case: A set of input values, together with the expected output.

Get in the habit of writing test cases for a function from the

function’s specification —even before writing the function’s body.

def number vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters™"
pass # nothing here yet!

9/9/14 Visualizing Functions

22

Test Cases: Finding Errors

* Bug: Error in a program. (Always Some Test Cases
* Debugging: Process of finding bug = nymper vowels('Bob")

e Testing: Process of analyzing, run1 ~ Answer should be 1

 Test case: A set of input values, to " Rumber_vowels(Aeiuo)
Answer should be 5

Get in the habit of writing test case = npumber vowels('Grrr')
function’s specification —even be; Answer should be 0

def number vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters™"
pass # nothing here yet!

9/9/14 Visualizing Functions 23

Representative Tests

e Cannot test all inputs

Representative Tests for

= “Infinite” possibilities number vowels(w)
e Limit ourselves to tests
that are representative * Word with just one vowel
= Each test is a significantly = For each possible vowel!
different input e Word with multiple vowels

= Every possible input is

similar to one chosen

* An art, not a science

= If easy, never have bugs

= Of the same vowel
= Of different vowels

 Word with only vowels
Word with no vowels

* Learn with much practice

9/9/14

Visualizing Functions

24

Running Example

e The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"™"

end_first = n.find(')
first = n[:end_first]
last =n[end_first+1:] 4 }

Look at precondition
return last+', '+first .
when choosing tests

* Representative Tests:
= Jast_name_first(‘Walker White") give 'White, Walker'
= Jast_name_first(‘Walker =~ White') gives 'White, Walker'

9/9/14 Visualizing Functions 25

Unit Test: A Special Kind of Module

e A unit test 1s a module that tests another module

= It imports the other module (so it can access it)
* It imports the cornelltest module (for testing)
= It defines one or more test procedures

e Evaluate the function(s) on the test cases
e Compare the result to the expected value

= [t has special code that calls the test procedures

* The test procedures use the cornelltest function

def assert_equals(expected,received):
""Quit program if expected and received differ""

9/9/14

Visualizing Functions

26

Modules vs. Scripts

Module Script
* Provides functions, constants ¢ Behaves like an application
= Example: temperature.py = Example: helloApp.py
e import it into Python * Run it from command line
= In interactive shell... = python helloApp.y
= or other module = No interactive shell
e All code is either = import acts “weird”
= In a function definition, or e Commands outside functions
= A variable assignment = Does each one in order

9/9/14 Visualizing Functions 27

Combining Modules and Scripts

* Scripts often have functions in them
= Can we import them without “running” script?

= Want to separate script part from module part
 New feature: if _ name_ =='_main_ "

= Put all “script code” underneath this line

= Also, indent all the code underneath

* Prevents code from running if imported

= Example: bettertemp.py

9/9/14 Visualizing Functions

28

Modules/Scripts in this Course

* Our modules consist of
* Function definitions
= “Constants” (global vars)
= Optional script code to

call/test the functions

e All statements must
" be inside of a function or
" assign a constant or

* be in the application code

 import should only pull in
definitions, not app code

9/9/14

temperature.py

Functions

def to_centigrade(x):
"""Returns: x converted to C""

Constants
FREEZING_C = 0.0 # temp. water freezes

Application code

if name ==' main_ "
assert_floats_equal(0.0,t0_centigrade(32.0))
assert_floats_equal(100,50_centigrade(R12))

assert_floats_equal(32.0,t0_fahrenheit(0.0))
assert_floats_equal(212.0,t0_fahrenheit(100.0))

Visualizing Functions 29

Testing last_name_first(n)

test procedure
def test_last_name_firstQ: literal value.
"""Test procedure for last_na st(n)""
cornelltest.assert_equals(‘'White, Walker',
last_name_first('Walker White"))

cornelltest.assert_equals('White, Walker', Quits Python }
last_name_first('Walker =~ White")) if not equal

Expected is the

(Received is the
expression.

Application code Message will print

if __name_=='_main_ " out only if no errors.
test_last_name_first()

print 'Module name is working correctly'

9/9/14 Visualizing Functions 30

Testing last_name_first(n)

test procedure . . - id N
def test_last_name_firstQ): APIESSIONS mSI. ©
of () can be split
"""Test procedure for last_name_first(n)"" :
over several lines.)
cornelltest.assert_equals(‘'White, Walker',
last_name first('Walker White"))

cornelltest.assert_equals('White, Walker', Quits Python }
last_name_first('Walker =~ White")) if not equal

Application code Message will print

if __name_=='_main_ " out only if no errors.
test_last_name_first()

print 'Module name is working correctly'

9/9/14 Visualizing Functions 31

Finding the Error

e Unit tests cannot find the source of an error

* Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""

end_first = n.find(' ")

print end_first ~ Print Varia}ble after }
L each assignment

first = n[:end_first]

: I ta It s f o

print first is '+ first Optional: Annotate

last = n[end_first+1:] value to make it

print last is '+ last’ easier to identify)

return last+', '+first
9/9/14 Visualizing Functions

32

Types of Testing

Black Box Testing White Box Testing

* Function 1s “opaque” * Function 1s “transparent”

= Test looks at what it does = Tests/debugging takes

* Fruitful: what it returns place inside of function

= Procedure: what changes * Focuses on where error is
 Example: Unit tests o Example: Use of print
* Problems: * Problems:

= Are the tests everything? = Much harder to do

* What caused the error? = Must remove when done

9/9/14 Visualizing Functions 33

