
Visualizing Functions	

Lecture 5	

Announcements For This Lecture	

Readings	

•  See link on website:	

§  Docstrings in Python	

§  Material is not in Text	

•  Practice today’s lecture	

•  Highly recommend

doing optional part 	

Assignment 1	

•  Posted on web page	

§  Due Wed, Sep. 18th	

§  Revise until correct	

•  Can work in pairs	

§  One submission for pair	

§  Link up on Piazza	

•  Consultants can help	

2	

9/9/14	

 Visualizing Functions	

Today’s Lab	

One-on-One Sessions	

•  Starting tomorrow: 1/2-hour one-on-one sessions	

§  Bring computer to work with instructor, TA or consultant	

§  Hands on, dedicated help with Lab 2 and/or Lab 3	

§  To prepare for assignment, not for help on assignment	

•  Limited availability: we cannot get to everyone	

§  Students with experience or confidence should hold back	

•  Sign up online in CMS: first come, first served	

§  Choose assignment One-on-One	

§  Pick a time that works for you; will add slots as possible	

§  Can sign up starting at 1pm TODAY	

9/9/14	

 Visualizing Functions	

 3	

Anatomy of a Specification	

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!’

Followed by a conversation starter.

Precondition: n is a string �
representing a person’s name"""

print 'Hello '+n+'!’

print 'How are you?'

9/4/14	

 Defining Functions	

 4	

One line description,	

followed by blank line	

More detail about the
function. It may be
many paragraphs.	

Precondition specifies
assumptions we make
about the arguments	

One line description,	

followed by blank line	

Anatomy of a Specification	

def to_centigrade(x):

"""Returns: x converted to centigrade

Value returned has type float.

Precondition: x is a float measuring �
temperature in fahrenheit"""

return 5*(x-32)/9.0

9/4/14	

 Defining Functions	

 5	

“Returns” indicates a
fruitful function	

More detail about the
function. It may be
many paragraphs.	

Precondition specifies
assumptions we make
about the arguments	

Preconditions	

•  Precondition is a promise	

§  If precondition is true, ���

the function works	

§  If precondition is false, ���

no guarantees at all	

•  Get software bugs when	

§  Function precondition is
not documented properly	

§  Function is used in ways ���
that violates precondition	

>>> to_centigrade(32)

0.0

>>> to_centigrade(212)

100.0

>>> to_centigrade('32')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

9/4/14	

 Defining Functions	

 6	

Precondition violated	

• Number of statement in the ���
 function body to execute next ���
• Starts with 1	

Draw parameters ���
as variables ���
(named boxes)	

How Do Functions Work?	

•  Function Frame: Representation of function call	

•  A conceptual model of Python	

9/9/14	

 Visualizing Functions	

 7	

Draw template on 	

a piece of paper	

 function name	

local variables (later in lecture)	

parameters	

instruction counter	

Text (Section 3.10) vs. Class	

Textbook	

 This Class	

9/9/14	

 Visualizing Functions	

 8	

 def to_centigrade(x):

 return 5*(x-32)/9.0

Call: to_centigrade(50.0) 	

Definition:	

to_centigrade
 1	

50.0	

x

to_centigrade
 x –> 50.0

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/9/14	

 Visualizing Functions	

 9	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade
 1	

x

Initial call frame	

(before exec body)	

next line to execute	

1	

50.0	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/9/14	

 Visualizing Functions	

 10	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade

50.0	

x

Executing the	

return statement	

Return statement creates a
special variable for result	

1	

RETURN
 50.0	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/9/14	

 Visualizing Functions	

 11	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade

50.0	

x

Executing the	

return statement	

The return terminates;	

no next line to execute	

1	

RETURN
 50.0	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/9/14	

 Visualizing Functions	

 12	

 def to_centigrade(x):

 return 5*(x-32)/9.0
 But don’t actually

erase on an exam	

1	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/9/14	

 Visualizing Functions	

 13	

1	

a	

 2	

b	

1	

2	

3	

 swap
 1	

1	

a	

 2	

b	

Global Variables	

Call Frame	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/9/14	

 Visualizing Functions	

 14	

1	

a	

 2	

b	

swap
 2	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/9/14	

 Visualizing Functions	

 15	

1	

a	

 2	

b	

swap
 3	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

✗	

2	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/9/14	

 Visualizing Functions	

 16	

1	

a	

 2	

b	

swap

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

✗	

2	

 ✗	

 1	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/9/14	

 Visualizing Functions	

 17	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

2	

3	

Visualizing Frames: The Python Tutor	

9/9/14	

 Visualizing Functions	

 18	

Visualizing Frames: The Python Tutor	

9/9/14	

 Visualizing Functions	

 19	

Global
Space	

Call Frame	

Limitations of the Python Tutor	

•  The Python Tutor is extremely useful	

§ You can see exactly what Python is doing	

§ You could use it to find errors in your code!	

•  However, the Python tutor is very limited	

§ You can only import the most basic modules	

§ You cannot import user-defined modules	

•  We need some other way to search for errors	

§  This is the motivation for code testing	

9/9/14	

 Visualizing Functions	

 20	

Limitations of the Python Tutor	

•  The Python Tutor is extremely useful	

§ You can see exactly what Python is doing	

§ You could use it to find errors in your code!	

•  However, the Python tutor is very limited	

§ You can only import the most basic modules	

§ You cannot import user-defined modules	

•  We need some other way to search for errors	

§  This is the motivation for code testing	

9/9/14	

 Visualizing Functions	

 21	

Many professional software

development tools do this too.	

Test Cases: Finding Errors	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

def number_vowels(w):

 """Returns: number of vowels in word w.

 Precondition: w string w/ at least one letter and only letters"""

 pass # nothing here yet!

	

	

9/9/14	

 Visualizing Functions	

 22	

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body. 	

Test Cases: Finding Errors	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

def number_vowels(w):

 """Returns: number of vowels in word w.

 Precondition: w string w/ at least one letter and only letters"""

 pass # nothing here yet!

	

	

9/9/14	

 Visualizing Functions	

 23	

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body. 	

Some Test Cases	

§  number_vowels('Bob')�

Answer should be 1	

§  number_vowels('Aeiuo')�

Answer should be 5	

§  number_vowels('Grrr')�

Answer should be 0	

Representative Tests	

•  Cannot test all inputs	

§  “Infinite” possibilities	

•  Limit ourselves to tests ���
that are representative	

§  Each test is a significantly

different input	

§  Every possible input is

similar to one chosen	

•  An art, not a science	

§  If easy, never have bugs	

§  Learn with much practice	

9/9/14	

 Visualizing Functions	

 24	

Representative Tests for���
number_vowels(w)

•  Word with just one vowel	

§  For each possible vowel!	

•  Word with multiple vowels	

§  Of the same vowel	

§  Of different vowels	

•  Word with only vowels	

•  Word with no vowels	

Running Example	

•  The following function has a bug:	

def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name> �

with one or more blanks between the two names"""

end_first = n.find(' ')

first = n[:end_first]

last = n[end_first+1:]

return last+', '+first

•  Representative Tests:	

§  last_name_first('Walker White') give 'White, Walker'

§  last_name_first('Walker White') gives 'White, Walker'

	

9/9/14	

 Visualizing Functions	

 25	

Look at precondition
when choosing tests	

Unit Test: A Special Kind of Module	

•  A unit test is a module that tests another module	

§  It imports the other module (so it can access it)	

§  It imports the cornelltest module (for testing)	

§  It defines one or more test procedures	

•  Evaluate the function(s) on the test cases	

•  Compare the result to the expected value	

§  It has special code that calls the test procedures	

•  The test procedures use the cornelltest function	

def assert_equals(expected,received):

 """Quit program if expected and received differ"""

9/9/14	

 Visualizing Functions	

 26	

Modules vs. Scripts	

Module	

•  Provides functions, constants	

§  Example: temperature.py	

•  import it into Python	

§  In interactive shell…	

§  or other module	

•  All code is either	

§  In a function definition, or	

§  A variable assignment	

	

Script	

•  Behaves like an application	

§  Example: helloApp.py	

•  Run it from command line	

§  python helloApp.y

§  No interactive shell	

§  import acts “weird”	

•  Commands outside functions	

§  Does each one in order	

9/9/14	

 Visualizing Functions	

 27	

Combining Modules and Scripts	

•  Scripts often have functions in them	

§  Can we import them without “running” script?	

§ Want to separate script part from module part	

•  New feature: if __name__ == '__main__':

§  Put all “script code” underneath this line	

§ Also, indent all the code underneath	

§  Prevents code from running if imported	

§  Example: bettertemp.py

9/9/14	

 Visualizing Functions	

 28	

Modules/Scripts in this Course	

•  Our modules consist of	

§  Function definitions	

§  “Constants” (global vars)	

§  Optional script code to

call/test the functions	

•  All statements must	

§  be inside of a function or	

§  assign a constant or	

§  be in the application code	

•  import should only pull in
definitions, not app code	

temperature.py

...

Functions

def to_centigrade(x):

 """Returns: x converted to C"""

…

Constants

FREEZING_C = 0.0 # temp. water freezes

…

Application code

if __name__ == '__main__':

 assert_floats_equal(0.0,to_centigrade(32.0))

 assert_floats_equal(100,to_centigrade(212))

 assert_floats_equal(32.0,to_fahrenheit(0.0))

 assert_floats_equal(212.0,to_fahrenheit(100.0))

9/9/14	

 Visualizing Functions	

 29	

Testing last_name_first(n)

test procedure

def test_last_name_first():

 """Test procedure for last_name_first(n)"""

 cornelltest.assert_equals('White, Walker',

 last_name_first('Walker White'))

 cornelltest.assert_equals('White, Walker',

 last_name_first('Walker White'))

Application code

if __name__ == '__main__':

 test_last_name_first()

 print 'Module name is working correctly'

9/9/14	

 Visualizing Functions	

 30	

Expected is the
literal value.	

Message will print
out only if no errors.	

Quits Python
if not equal	

Received is the
expression.	

Testing last_name_first(n)

test procedure

def test_last_name_first():

 """Test procedure for last_name_first(n)"""

 cornelltest.assert_equals('White, Walker',

 last_name_first('Walker White'))

 cornelltest.assert_equals('White, Walker',

 last_name_first('Walker White'))

Application code

if __name__ == '__main__':

 test_last_name_first()

 print 'Module name is working correctly'

9/9/14	

 Visualizing Functions	

 31	

Expressions inside
of () can be split
over several lines.	

Message will print
out only if no errors.	

Quits Python
if not equal	

Finding the Error	

•  Unit tests cannot find the source of an error	

•  Idea: “Visualize” the program with print statements	

def last_name_first(n):

 """Returns: copy of <n> in form <last>, <first>"""

 end_first = n.find(' ')

 print end_first

 first = n[:end_first]

 print 'first is '+`first`

 last = n[end_first+1:]

 print 'last is '+`last`

 return last+', '+first

9/9/14	

 Visualizing Functions	

 32	

Print variable after
each assignment	

Optional: Annotate
value to make it
easier to identify	

Types of Testing	

Black Box Testing	

•  Function is “opaque”	

§  Test looks at what it does	

§  Fruitful: what it returns	

§  Procedure: what changes	

•  Example: Unit tests	

•  Problems:	

§  Are the tests everything?	

§  What caused the error?	

White Box Testing	

•  Function is “transparent”	

§  Tests/debugging takes

place inside of function	

§  Focuses on where error is	

•  Example: Use of print

•  Problems:	

§  Much harder to do	

§  Must remove when done	

9/9/14	

 Visualizing Functions	

 33	

