
1	

Preconditions	

•  Precondition is a promise	

§  If precondition is true, ���

the function works	

§  If precondition is false, ���

no guarantees at all	

•  Get software bugs when	

§  Function precondition is
not documented properly	

§  Function is used in ways ���
that violates precondition	

>>> to_centigrade(32)
0.0
>>> to_centigrade(212)
100.0
>>> to_centigrade('32')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "temperature.py", line 19 …
TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated	

• Number of statement in the ���
 function body to execute next ���
• Starts with 1	

Draw parameters ���
as variables ���
(named boxes)	

How Do Functions Work?	

•  Function Frame: Representation of function call	

•  A conceptual model of Python	

Draw template on 	

a piece of paper	

 function name	

local variables (later in lecture)	

parameters	

instruction counter	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

 def to_centigrade(x):
 return 5*(x-32)/9.0

to_centigrade 1	

50.0	
x

Initial call frame	

(before exec body)	

next line to execute	

1	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):
 """Swap vars a & b"""
 tmp = a
 a = b
 b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

1	
a	
 2	
b	

swap

1	
a	
 2	
b	

Global Variables	

Call Frame	

1	
tmp	

✗	
2	
 ✗	
 1	

1	

2	

3	

Visualizing Frames: The Python Tutor	

Global
Space	

Call Frame	

Test Cases: Finding Errors	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

def number_vowels(w):
 """Returns: number of vowels in word w.

 Precondition: w string w/ at least one letter and only letters"""
 pass # nothing here yet!
	

	

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body. 	

2	

Representative Tests	

•  Cannot test all inputs	

§  “Infinite” possibilities	

•  Limit ourselves to tests ���
that are representative	

§  Each test is a significantly

different input	

§  Every possible input is

similar to one chosen	

•  An art, not a science	

§  If easy, never have bugs	

§  Learn with much practice	

Representative Tests for���
number_vowels(w)

•  Word with just one vowel	

§  For each possible vowel!	

•  Word with multiple vowels	

§  Of the same vowel	

§  Of different vowels	

•  Word with only vowels	

•  Word with no vowels	

Running Example	

•  The following function has a bug:	

def last_name_first(n):
"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name> �
with one or more blanks between the two names"""

 end_first = n.find(' ')
 first = n[:end_first]
 last = n[end_first+1:]

return last+', '+first

•  Representative Tests:	

§  last_name_first('Walker White')
§  last_name_first('Walker White')

	

Look at precondition
when choosing tests	

Unit Test: A Special Kind of Module	

•  A unit test is a module that tests another module	

§  It imports the other module (so it can access it)	

§  It imports the cornelltest module (for testing)	

§  It defines one or more test procedures	

•  Evaluate the function(s) on the test cases	

•  Compare the result to the expected value	

§  It has special code that calls the test procedures	

•  The test procedures use the cornelltest function	

def assert_equals(expected,received):
 """Quit program if expected and received differ"""

Modules vs. Scripts	

Module	

•  Provides functions, constants	

§  Example: temperature.py	

•  import it into Python	

§  In interactive shell…	

§  or other module	

•  All code is either	

§  In a function definition, or	

§  A variable assignment	

	

Script	

•  Behaves like an application	

§  Example: helloApp.py	

•  Run it from command line	

§  python helloApp.y
§  No interactive shell	

§  import acts “weird”	

•  Commands outside functions	

§  Does each one in order	

Modules/Scripts in this Course	

•  Our modules consist of	

§  Function definitions	

§  “Constants” (global vars)	

§  Optional application code

to call the functions	

•  All statements must	

§  be inside of a function or	

§  assign a constant or	

§  be in the application code	

•  import should only pull in
definitions, not app code	

temperature.py
...
Functions
def to_centigrade(x):
 """Returns: x converted to C"""
…
Constants
FREEZING_C = 0.0 # temp. water freezes
…
Application code
if __name__ == '__main__':
 print 'Provide a temp. in Fahrenheit:'
 f = float(raw_input())
 c = round(to_centigrade(f),2)
 print 'The temperature is '+`c`+' C'

Testing last_name_first(n)

test procedure
def test_last_name_first():
 """Test procedure for last_name_first(n)"""
 cornelltest.assert_equals('White, Walker',
 last_name_first('Walker White'))
 cornelltest.assert_equals('White, Walker',
 last_name_first('Walker White'))

Application code
if __name__ == '__main__':
 test_last_name_first()
 print 'Module name is working correctly'

Expressions inside
of () can be split
over several lines.	

Message will print
out only if no errors.	

Quits Python
if not equal	

