Lecture 4

Defining Functions

Academic Integrity Quiz

* Reading quiz about the course Al policy

= (Go to http://www.cs.cornell.edu/courses/cs11110/

" Click Academic Integrity in side bar
= Read and take quiz in CMS

e Right now, missing ~100 enrolled students
= If you do not take 1t, you must drop the class
* Will grade and return by Friday

* If you missed questions, you will retake

9/4/14 Defining Functions

Recall: Modules

* Modules provide extra functions, variables

= Kxample: math provides math.cos(), math.pi

= Access them with the import command

* Python provides a lot of them for us

e This Lecture: How to make modules

9/4/14

= Komodo Edit to make a module

= Python to use the module

Defining Functions

\

st

Two different
programs

Python Shell vs. Modules

® O O & wmwhite — Python — 47x26

O O O module.py (~/Documents/Professional /Cours...

Ryleh:~[105] pythen

Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012,
20:52:43)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on

darwin

Type "help”, "copyright”, "credits”™ or "license
" for more information.

>>»> X = 142

>>»> X = 3*x

>>> X

9

22> I

(€2 [D

-

B« DD

oj[@ =

SWo~NOULH WN M

[y
X X X

" This is a simple module.
how modules work"""

1+
3*

| module.py * I

It shows

2
X

¥ module.py
¥ Walker M. White
June 20, 2012

=

e [Launch in command line
e Type each line separately

e Python executes as you type

e Write in a text editor
= We use Komodo Edit

= But anything will work
e Run module with import

9/4/14 Defining Functions

Using a Module

Module Contents

H module.py ﬁ Single line comment]

(not executed)

This is a simple module. Docstring (note the Triple Quotes)

It shows how modules work""" Acts as a multiple-line comment

Useful for code documentation
_ N
x=1+2 Commands
X = 3*x Executed on import

X)
Not a command.
import ignores this)

9/4/14 Defining Functions

Using a Module

Module Contents Python Shell
module.py >>> import module
>>>
""" This is a simple module. Traceback (most recent call last):
It shows how modules work™"" File "<stdin>", line 1, in <module>

X =142
X =38*x
X

9/4/14

NameError: name 'x' is not defined

7

| prefixed by module name

>>> module.x
9

“Module data” must be

7

Prints docstring and
module contents

7>>> help(module)

Defining Functions

Modules Must be in Working Directory!

= B X
(?\ Qv‘- Desktop » v| +y ‘ ’ Search Desktop
Organize v .| Open Include in library ~ Share with v B New folder w= v 1| 0
- P Te H i
- Favorites ‘ Virtual CloneDrive] assignment6
B Deskt | Shortcut) h File folder
esktop 82/ 122kB ‘
4 Downloads
+# Dropbox B CornellExtensionsInstall
i E
<» RecentPlaces |= — ¢ folder
) | Exodus
.~ Libraries “ | File folder
3 Documents ‘ Module you want
4. Music , | SalemRising
B Picures fl. - Fiefocer is in this folder
‘ Videos
.j CornellExtensionsInstall Sroftc t
Compressed (zipped) Folder J V‘ ! ',)
& Homegroup K (d 101KB
assignment6 Date modified: 8/20/2013 10:41 AM
! h File folder

9/4/14 Defining Functions

Modules Must be in Working Directory!

@vv‘[Desktop » v | 43 || search Desktop

Organize v Open Include in library ~ Share with v Bu, New folder w= Y T\
Favorites - Virtual CloneDrive assignment6
M Desktop S RN ’ * File folde

@ Command Prompt ‘ = | [|-

Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

m >

C:\Users\lWalker White>cd "C:\Users\Walker White\Desktop\assignmentg"

Module you want
is in this folder

C:\Users\lWalker White\Desktop\assignment&>python

Have to navigate to folder
BEFORE running Python

9/4/14 Defining Functions

We Write Programs to Do Things

* Functions are the key doers

Function Call Function Definition

e Command to do the function * Defines what function does

)

'Hello '+n+'!"

greet(‘Walker') def greet(n
[Function

Header

declaration of

argument to
assign to n

parameter n

Function
Body
(indented)

* Parameter: variable that is listed within
the parentheses of a method header.

* Argument: a value to assign to the method

9/4/14 c. e
parameter when it is called

Anatomy of a Function Definition

EIN EII

def greet(n): % Function Header]
"""Prints a greeting to the name n

<[Docstring }
Precondition: n is a string Specification

representing a person’s name"""

print 'Hello '+n+'!' Statements to
print 'How are you?' execute when called

The vertical line Use vertical lines when you write Python
indicates indentation on exams so we can see indentation

9/4/14 Defining Functions

Procedures vs. Fruitful Functions

Procedures Fruitful Functions

* Functions that do something ¢ Functions that give a value

e (Call them as a statement e Call them in an expression
* Example: greet('Walker') e Example: x = round(2.56,1)

Historical Aside

e Historically “function” = “fruitful function”

e But now we use ‘“function’ to refer to both

9/4/14

Defining Functions 11

The return Statement

* Fruitful functions require a return statement
e Format: return <expression>

= Provides value when call 1s used 1n an expression
= Also stops executing the function!

* Any statements after a return are ignored

e Example: temperature converter function
def to_centigrade(x):
""Returns: X converted to centigrade™""
return 5*(x-32)/9.0

9/4/14 Defining Functions

12

Print vs. Return

Print

Return

e Displays a value on screen e Defines a function’s value

= Used primarily for testing

= Not useful for calculations

def print_plus(n):
print (n+1)

>>> x = plus_one(R)

5!

>>>

9/4/14

= Important for calculations

= But does not display anything

def return_plus(n):
return (n+1)

>>> x = plus_one(R)

>>>

Defining Functions

13

Print vs. Return

Print Return

e Displays a value on screen e Defines a function’s value

= Used primarily for testing = Important for calculations

= Not useful for calculations = But does not display anything
def print_plus(n): def return_plus(n):

print (n+1) return (n+1)
>>> x = plus_one(R) >>> x = plus_one(R)
5] >>>
X X| &

>2>2>

[Nothing here!

9/4/14 Defining Functions 14

Functions and Modules

* Purpose of modules is function definitions
* Function definitions are written in module file

* Import the module to call the functions

* Your Python workflow (right now) 1s

1. Write a function in a module (a .py file)

Open up the command shell

Move to the directory with this file
Start Python (type python)

Import the module

o B gs B

Try out the function

9/4/14 Defining Functions

Aside: Constants

e Modules often have variables outside a function
= We call these global variables
= Accessible once you import the module

* Global variables should be constants
= Variables that never, ever change
* Mnemonic representation of important value
= Kxample: math.pi, math.e in math

 In this class, constant names are capitalized!

" So we can tell them apart from non-constants

9/4/14 Defining Functions

16

Module Example: Temperature Converter

temperature.py
"""Conversion functions between fahrenheit and centrigrade"""

Functions
def to_centigrade(x):

"""Returns: x converted to centigrade""" Stvle Guidel; N\
return 5*(x-32)/9.0 tyle Guideline:
Two blank lines between
def to_fahrenheit(x): function definitions P

"""Returns: x converted to fahrenheit"""
return 9*x/5.0+32

Constants
FREEZING_C = 0.0 # temp. water freezes

Defining Functions 17

Example from Previous Lecture

def second_in_list(s):
"""Returns: second item in comma-separated list

The final result does not have any whitespace on edges

Precondition: s is a string of items separated by a comma."""

startcomma = s.index(',")

tail = g[startcomma+1:]
endcomma = tail.index(',") L See commalist.py }
item = tail[:endcomma)].strip()

return item

9/4/14 Defining Functions

18

Recall: The Python API

006 9.2. math — Mathematical functions — Python v2.7.3 documentation %
$.python.org/library/math.html ¢ | [Q- python library [2\

tertainment (29) v Commentary (64) ¥ News (24) ¥ Research ¥ Puzzles ¥ Shopping ¥ Travel ¥ Financial ¥ TroubleShooting ¥ »

FunCtiOH name 'ntation » The Python Standard Library » 9. Numeric and Mathematical Modules »
ORI 9.2, math — Mathematicql functions

previous | next| modules | index

Number of arguments |

math. Ceil(X)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

conversion

Symerbolic so that the programmer can determine how and why it was generated in the first place.

h owi nction e provided bv this module. Except when explicitly noted otherwise, all

What the function evaluates to

epresentation functions

9.1. numbers — Numeric

abstract base classes i cail(x)

Next topic Return the ceiling of x as a float, th|
9.3. cmath —
Mathematical functions math. copysign(x, y)

bt Retm xwith hesignof y. onapl @ ThlS 1S d SpeCiﬁcatiOH

This Page -1.0.

Report a Bug
Show Source

Quick search math. £abs(X)
T Return the absolute value of x. .
= . ccsariai) = But not how to implement

Enter search terms or a Return x factorial. Raises valueerrd
module, class or function
Done: New in version 2.6.

— e Write them as docstrings

New in version 2.6.

* Enough info to use func.

Return the floor of x as a float, the

!
|

9/4/14 Defining Functions 19

Anatomy of a Specification

(One line description,
def greet(n): followed by blank line

"""Prints a greeting to the name n

More detail about the
function. It may be
many paragraphs.

Greeting has format 'Hello <n>!’
Followed by a conversation starter.

AN

Precondition: n is a string
representing a person’s name"""

print 'Hello '+n+'l’
print 'How are you?'

.)
Precondition specifies

assumptions we make
about the arguments

4

9/4/14 Defining Functions 20

Anatomy of a Specification

¢

‘Returns’ indicates a
def to_centigrade(x): fruitful function

f‘""Returns:]x converted to centigrade

More detail about the
function. It may be
many paragraphs.

Value returned has type float.

N

Precondition: x is a float measuring
temperature in fahrenheit"""

return 5*(x-32)/9.0

.)
Precondition specifies

assumptions we make
about the arguments

4

9/4/14 Defining Functions 21

Preconditions

* Precondition 1s a promise

= If precondition is true,
the function works

= If precondition is false,
no guarantees at all
* Get software bugs when

* Function precondition is
not documented properly

* Function 1s used in ways
that violates precondition

9/4/14

>>> t,0_centigrade(3R)
0.0

>>> t,0_centigrade(R12)
100.0

>>> t0_centigrade('32")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "temperature.py", line 19 ...

TypeError: unsupported operand type(s)
for -: 'str' and 'int’

[Precondition m

Defining Functions 22

Global Variables and Specifications

e Python does not support docstrings for variables
* Only functions and modules (e.g. first docstring)
= help() shows *“data’, but does not describe it

 But we still need to document them
= Use a single line comment with #
= Describe what the variable means
 Example:
= FREEZING _C=0.0 # temp. water freezes in C
= BOILING_C = 100.0 # temp. water boils in C

9/4/14 Defining Functions 23

