
Defining Functions	

Lecture 4	

Academic Integrity Quiz	

•  Reading quiz about the course AI policy	

§ Go to http://www.cs.cornell.edu/courses/cs11110/
§  Click Academic Integrity in side bar	

§  Read and take quiz in CMS	

•  Right now, missing ~100 enrolled students	

§  If you do not take it, you must drop the class	

•  Will grade and return by Friday	

§  If you missed questions, you will retake	

9/4/14	
 Defining Functions	
 2	

Recall: Modules 	

•  Modules provide extra functions, variables	

§  Example: math provides math.cos(), math.pi	

§ Access them with the import command 	

•  Python provides a lot of them for us	

•  This Lecture: How to make modules	

§ Komodo Edit to make a module	

§  Python to use the module	

	

9/4/14	
 Defining Functions	
 3	

Two different	

programs	

Python Shell vs. Modules	

•  Launch in command line	

•  Type each line separately	

•  Python executes as you type	

•  Write in a text editor	

§  We use Komodo Edit	

§  But anything will work	

•  Run module with import

9/4/14	
 Defining Functions	
 4	

Using a Module	

Module Contents	

module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x

9/4/14	
 Defining Functions	
 5	

Single line comment	

(not executed)	

Docstring (note the Triple Quotes)	

Acts as a multiple-line comment	

Useful for code documentation	

Commands	

Executed on import

Not a command.	

import ignores this	

Using a Module	

Module Contents	

module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x

Python Shell	

>>> import module
>>>
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>>
9
>>>

9/4/14	
 Defining Functions	
 6	

x

module.x

help(module)	

“Module data” must be
prefixed by module name	

Prints docstring and
module contents	

Modules Must be in Working Directory!	

9/4/14	
 Defining Functions	
 7	

Module you want ���
is in this folder	

Modules Must be in Working Directory!	

9/4/14	
 Defining Functions	
 8	

Module you want ���
is in this folder	

Have to navigate to folder
BEFORE running Python	

We Write Programs to Do Things	

•  Functions are the key doers	

9/4/14	
 Defining Functions	
 9	

Function Call	
 Function Definition	

•  Command to do the function	

	
greet('Walker')	

	

•  Defines what function does	

	
def greet(n):	

	
 	
print 'Hello '+n+'!'

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is listed within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

	

Function	

Header	

Function	

Body	

(indented)	

Anatomy of a Function Definition	

def greet(n):

"""Prints a greeting to the name n

Precondition: n is a string �
representing a person’s name"""
print 'Hello '+n+'!'
print 'How are you?'

9/4/14	
 Defining Functions	
 10	

Function Header	

name	
 parameters	

Docstring
Specification	

Statements to
execute when called	

The vertical line
indicates indentation	

Use vertical lines when you write Python
on exams so we can see indentation	

Procedures vs. Fruitful Functions	

Procedures	

•  Functions that do something	

•  Call them as a statement	

•  Example: greet('Walker')

Fruitful Functions	

•  Functions that give a value	

•  Call them in an expression	

•  Example: x = round(2.56,1)

9/4/14	
 Defining Functions	
 11	

Historical Aside	

•  Historically “function” = “fruitful function”	

•  But now we use “function” to refer to both	

The return Statement	

•  Fruitful functions require a return statement	

•  Format: return <expression>

§  Provides value when call is used in an expression	

§ Also stops executing the function!	

§ Any statements after a return are ignored	

•  Example: temperature converter function	

def to_centigrade(x):

"""Returns: x converted to centigrade"""
return 5*(x-32)/9.0

9/4/14	
 Defining Functions	
 12	

Print vs. Return	

Print	

•  Displays a value on screen	

§  Used primarily for testing	

§  Not useful for calculations	

def print_plus(n):
 print (n+1)
>>> x = plus_one(2)
3
>>>

Return	

•  Defines a function’s value	

§  Important for calculations	

§  But does not display anything	

def return_plus(n):
 return (n+1)
>>> x = plus_one(2)
>>>
	

9/4/14	
 Defining Functions	
 13	

Print vs. Return	

Print	

•  Displays a value on screen	

§  Used primarily for testing	

§  Not useful for calculations	

def print_plus(n):
 print (n+1)
>>> x = plus_one(2)
3
>>>

Return	

•  Defines a function’s value	

§  Important for calculations	

§  But does not display anything	

def return_plus(n):
 return (n+1)
>>> x = plus_one(2)
>>>
	

9/4/14	
 Defining Functions	
 14	

x 3x

Nothing here!	

Functions and Modules	

•  Purpose of modules is function definitions	

§  Function definitions are written in module file	

§  Import the module to call the functions	

•  Your Python workflow (right now) is	

1.  Write a function in a module (a .py file)	

2.  Open up the command shell	

3.  Move to the directory with this file	

4.  Start Python (type python)	

5.  Import the module	

6.  Try out the function	

9/4/14	
 Defining Functions	
 15	

Aside: Constants	

•  Modules often have variables outside a function	

§ We call these global variables	

§ Accessible once you import the module	

•  Global variables should be constants	

§ Variables that never, ever change	

§ Mnemonic representation of important value	

§  Example: math.pi, math.e in math

•  In this class, constant names are capitalized!	

§  So we can tell them apart from non-constants	

9/4/14	
 Defining Functions	
 16	

Module Example: Temperature Converter	

temperature.py
"""Conversion functions between fahrenheit and centrigrade"""

Functions
def to_centigrade(x):
 """Returns: x converted to centigrade"""
 return 5*(x-32)/9.0

def to_fahrenheit(x):
 """Returns: x converted to fahrenheit"""
 return 9*x/5.0+32

Constants
FREEZING_C = 0.0 # temp. water freezes
…	
 Defining Functions	
 17	

Style Guideline:	

Two blank lines between	

function definitions	

Example from Previous Lecture	

def second_in_list(s):
 """Returns: second item in comma-separated list

 The final result does not have any whitespace on edges

 Precondition: s is a string of items separated by a comma."""
 startcomma = s.index(',')
 tail = s[startcomma+1:]
 endcomma = tail.index(',')
 item = tail[:endcomma].strip()
 return item

9/4/14	
 Defining Functions	
 18	

See commalist.py

Recall: The Python API	

9/4/14	
 Defining Functions	
 19	

Function name	

Number of arguments	

What the function evaluates to	

•  This is a specification	

§  Enough info to use func.	

§  But not how to implement	

•  Write them as docstrings	

Anatomy of a Specification	

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!’
Followed by a conversation starter.

Precondition: n is a string �
representing a person’s name"""
print 'Hello '+n+'!’
print 'How are you?'
9/4/14	
 Defining Functions	
 20	

One line description,	

followed by blank line	

More detail about the
function. It may be
many paragraphs.	

Precondition specifies
assumptions we make
about the arguments	

One line description,	

followed by blank line	

Anatomy of a Specification	

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Precondition: x is a float measuring �
temperature in fahrenheit"""
return 5*(x-32)/9.0

9/4/14	
 Defining Functions	
 21	

“Returns” indicates a
fruitful function	

More detail about the
function. It may be
many paragraphs.	

Precondition specifies
assumptions we make
about the arguments	

Preconditions	

•  Precondition is a promise	

§  If precondition is true, ���

the function works	

§  If precondition is false, ���

no guarantees at all	

•  Get software bugs when	

§  Function precondition is
not documented properly	

§  Function is used in ways ���
that violates precondition	

>>> to_centigrade(32)
0.0
>>> to_centigrade(212)
100.0
>>> to_centigrade('32')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "temperature.py", line 19 …
TypeError: unsupported operand type(s)
for -: 'str' and 'int'

9/4/14	
 Defining Functions	
 22	

Precondition violated	

Global Variables and Specifications	

•  Python does not support docstrings for variables	

§ Only functions and modules (e.g. first docstring)	

§  help() shows “data”, but does not describe it	

•  But we still need to document them	

§ Use a single line comment with #	

§ Describe what the variable means	

•  Example:	

§  FREEZING_C = 0.0 # temp. water freezes in C
§  BOILING_C = 100.0 # temp. water boils in C

9/4/14	
 Defining Functions	
 23	

