
1	

Academic Integrity Quiz	

•  Reading quiz about the course AI policy	

§ Go to http://www.cs.cornell.edu/courses/cs11110/

§  Click Academic Integrity in side bar	

§  Read and take quiz in CMS	

•  Right now, missing ~100 enrolled students	

§  If you do not take it, you must drop the class	

•  Will grade and return by Friday	

§  If you missed questions, you will retake	

Python Shell vs. Modules	

•  Launch in command line	

•  Type each line separately	

•  Python executes as you type	

•  Write in a text editor	

§  We use Komodo Edit	

§  But anything will work	

•  Run module with import

Using a Module	

Module Contents	

module.py

""" This is a simple module.

It shows how modules work"""

x = 1+2

x = 3*x

x

Python Shell	

>>> import module

>>>

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>>

9

>>>

x

module.x

help(module)	

“Module data” must be
prefixed by module name	

Prints docstring and
module contents	

We Write Programs to Do Things	

•  Functions are the key doers	

Function Call	

 Function Definition	

•  Command to do the function	

	

greet('Walker')	

	

•  Defines what function does	

	

def greet(n):	

	

 	

print 'Hello '+n+'!'

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is listed within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

	

Function	

Header	

Function	

Body	

(indented)	

Anatomy of a Function Definition	

def greet(n):

"""Prints a greeting to the name n

Precondition: n is a string �
representing a person’s name"""

print 'Hello '+n+'!'

print 'How are you?'

Function Header	

name	

 parameters	

Docstring
Specification	

Statements to
execute when called	

The vertical line
indicates indentation	

Use vertical lines when you write Python
on exams so we can see indentation	

Procedures vs. Fruitful Functions	

Procedures	

•  Functions that do something	

•  Call them as a statement	

•  Example: greet('Walker')

Fruitful Functions	

•  Functions that give a value	

•  Call them in an expression	

•  Example: x = round(2.56,1)

Historical Aside	

•  Historically “function” = “fruitful function”	

•  But now we use “function” to refer to both	

2	

The return Statement	

•  Fruitful functions require a return statement	

•  Format: return <expression>

§  Provides value when call is used in an expression	

§ Also stops executing the function!	

§ Any statements after a return are ignored	

•  Example: temperature converter function	

def to_centigrade(x):

"""Returns: x converted to centigrade"""

return 5*(x-32)/9.0

Module Example: Temperature Converter	

temperature.py

"""Conversion functions between fahrenheit and centrigrade"""

Functions

def to_centigrade(x):

 """Returns: x converted to centigrade"""

 return 5*(x-32)/9.0

def to_fahrenheit(x):

 """Returns: x converted to fahrenheit"""

 return 9*x/5.0+32

Constants

FREEZING_C = 0.0 # temp. water freezes

…	

Style Guideline:	

Two blank lines between	

function definitions	

Print vs. Return	

Print	

•  Displays a value on screen	

§  Used primarily for testing	

§  Not useful for calculations	

def print_plus(n):

 print (n+1)

>>> x = plus_one(2)

3

>>>

Return	

•  Defines a function’s value	

§  Important for calculations	

§  But does not display anything	

def return_plus(n):

 return (n+1)

>>> x = plus_one(2)

>>>

	

x
 3
x

Nothing here!	

Anatomy of a Specification	

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Precondition: n is a string �
representing a person’s name"""

print 'Hello '+n+'!'

One line description,	

followed by blank line	

More detail about the
function. It may be
many paragraphs.	

Precondition specifies
assumptions we make
about the arguments	

Preconditions	

•  Precondition is a promise	

§  If precondition is true, ���

the function works	

§  If precondition is false, ���

no guarantees at all	

•  Get software bugs when	

§  Function precondition is
not documented properly	

§  Function is used in ways ���
that violates precondition	

>>> to_centigrade(32)

0.0

>>> to_centigrade(212)

100.0

>>> to_centigrade('32')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated	

Global Variables and Specifications	

•  Python does not support docstrings for variables	

§ Only functions and modules (e.g. first docstring)	

§  help() shows “data”, but does not describe it	

•  But we still need to document them	

§ Use a single line comment with #	

§ Describe what the variable means	

•  Example:	

§  FREEZING_C = 0.0
temp. water freezes in C

§  BOILING_C = 100.0
temp. water boils in C

