
CS 1110, LAB 13: MORE SEQUENCE ALGORITHMS

http://www.cs.cornell.edu/courses/cs1110/2014fa/labs/lab13.pdf

First Name: Last Name: NetID:

This is an optional lab; it does not need to be turned in or checked off. The purpose of this
lab is to give you extra practice to study for the final exam. This lab is similar to the second half
of Lab 12, in that you have to modify code to satisfy invariants. You will be shown several of
the sequence algorithms in class. For each one you are given an invariant. You are to draw the
invariant and note how this invariant affects the code for the algorithm.

Algorithm Shortcuts. As with the previous lab, we want the algorithms to be as close to Python
as possible, and not high-level “pseudo-code”. However, if you want to swap two elements of an
list, you are permitted to write

swap b[i] and b[j];

instead of the the three assignments that perform the swap. This is the only algorithm shortcut
that we are permitting.

Exercise 1: General Partitioning Algorithm

Assume that list b is not necessarily sorted initially. The partition algorithm (which uses only
swap operations) is designed to meet the assertions below:

Precondition: b[h] = x for some x and h ≤ k < len(b)

(this is so we can talk about b[h]; x is not a program variable.)

Postcondition: b[h..j-1] ≤ x = b[j] ≤ b[j+1..k]

Below are three different invariants. We provide the first one as an example. You are to complete
the invariant and the algorithm code for the other two.

Invariant P1. Written in text form, this invariant is as follows:

P1: b[h..j-1] ≤ x = b[j] ≤ b[t..k]

The pictorial representation of this invariant is as follows:

h j-1 j j+1 t-1 t k

b <= x x ??? >= x

Course authors: D. Gries, L. Lee, S. Marschner, W. White

1

http://www.cs.cornell.edu/courses/cs1110/2014fa/labs/lab13.pdf

The following is the code for this invariant:

Make invariant true at start

j = h

t = k+1

inv: b[h..j-1] <= x = b[j] <= b[t..k]

while j < t-1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]

j = j + 1

else:
swap b[j+1] and b[t-1]

t = t - 1

post: b[h..j-1] <= x = b[j] <= b[j+1..k]

Invariant P2. Written in text form, this invariant is as follows:

P2: b[h..j-1] ≤ x = b[j] ≤ b[q+1..k]

Draw the pictorial representation of this invariant below.

Write your loop for this invariant in the space below:

2

Invariant P3. Written in text form, this invariant is as follows:

P3: b[h..j-1] ≤ x = b[j] ≤ b[j+1..n-1]

Draw the pictorial representation of this invariant below.

Write your loop for this invariant in the space below:

Exercise 2: Selection Sort

The function selection sort is an algorithm sorts the contents of the list b. The postcondition
for this problem is straightforward:

Postcondition: b[0..len(b)-1] is sorted (in ascending order)

We have provided several invariants for you below. The first one is completely worked out for you.
For the other two, you should draw the invariants and provide the code for the algorithm.

Invariant P1. Written in text form, this invariant is as follows:

P1: b[0..k-1] is sorted and b[0..k-1] ≤ b[k..]

The pictorial representation of this invariant is as follows:

0 k-1 k

b sorted, <= b[k..] >= b[0..k-1]

3

When writing the code for this algorithm, you should state what it is you want to do, not how
to do it. In particular, we do not want to see a nested loop (e.g. a loop within the body of your
first loop). Instead, you should take one of the algorithms from Lab 12 and turn it into a helper
function. We have done this below.

Make invariant true at start

k = 0

inv: b[0..k-1] is sorted and b[0..k-1] <= b[k..]

while k < len(b):
pos = minpos(b,k,len(b)-1) # Exercise 2 from Lab 12.

swap b[k] and b[x] # Put b[x] in sorted region

k = k + 1

post: b[0..len(b)-1] is sorted

Invariant P2. Written in text form, this invariant is as follows:

P2: b[0..h] is sorted and b[0..h] ≤ b[h+1..]

Draw the pictorial representation of this invariant below.

Write your loop for this invariant in the space below:

Invariant P3. Written in text form, this invariant is as follows:

P3: b[s+1..len(b)-1] is sorted and b[0..s] ≤ b[s+1..]

Draw the pictorial representation of this invariant below.

4

Write your loop for this invariant in the space below. Your code will require a helper function
which is similar to, but not the same as one of the previous exercises. You do not have to implement
the helper function so long as you clearly explain what it does.

Exercise 3: Dutch National Flag

The last algorithm is like partition in that it groups numbers into general buckets without actually
sorting them. While partition groups the numbers into two buckets (those ¡= and ¿= the pivot x),
Dutch National Flag organizes them into three buckets. Stated as text, the postcondition is

Postcondition: The elements of b[0..i-1] are negative, the elements of b[j..len(b)-1]
are positive, and the elements of b[i..j-1] are all zeroes.

The pictorial representation of this postcondition is as follows:

0 i j

b < 0 = 0 > 0

Below are two invariants for this algorithm. We have worked out the first one for you. You are
to complete the second, drawing the invariant pictorially and providing the algorithm code.

Invariant P1. Written in text form, this invariant is as follows:

P1: The elements of b[0..t-1] are negative, the elements of b[j..len(b)-1] are
positive, and the elements of b[i..j-1] are all zeroes.

The pictorial representation of this invariant is as follows:

0 t i j

b < 0 ??? = 0 > 0

5

The code satisfying this invariant is shown below.

Make invariant true at start

t = 0; j = len(b); i = len(b)

inv: b[0..t-1] < 0, b[t..i-1] unknown, b[i..j-1] = 0, and b[j..] > 0

while t < i:
if b[i-1] < 0:

swap b[i-1] and b[t]

t= t+1

elif b[i-1] == 0:
i= i-1

else:
swap b[i-1] and b[j]

i= i-1; j= j-1

post: b[0..i-1] < 0, b[i..j-1] = 0, and b[j..] > 0

Invariant P2. Written in text form, this invariant is as follows:

P1: The elements of b[0..i-1] are negative, the elements of b[j..len(b)-1] are
positive, and the elements of b[i..t-1] are all zeroes.

Draw the pictorial representation of this invariant below.

Write your loop for this invariant in the space below. When you are done, the lab is finished.

6

	Algorithm Shortcuts
	Exercise 1: General Partitioning Algorithm
	Invariant P1
	Invariant P2
	Invariant P3

	Exercise 2: Selection Sort
	Invariant P1
	Invariant P2
	Invariant P3

	Exercise 3: Dutch National Flag
	Invariant P1
	Invariant P2

