
CS 1110, LAB 10: SUBCLASSES AND ENCAPSULATION

http://www.cs.cornell.edu/courses/cs1110/2014fa/labs/lab10.pdf

First Name: Last Name: NetID:

This lab demonstrates the power of subclasses, particularly in GUI applications. Subclasses are
a great way to customize visual behavior of a GUI object. In addition to basic subclasses, you this
lab will also give you some experience with encapsulation, the process of protecting attributes with
getters and setters.

We know that you have a lot to do this week. The exam is coming up, and Assignment 5 and
Assignment 6 have been pushed out simulatenously (though Assignment 6 is not due until well after
the exam). We have kept this lab very short. In our experience, you will find you spend more time
reading the lab than doing it. Most people are able to complete this lab during the lab section.

Lab Materials. We have created several Python files for this lab. You can
download all of the from the Labs section of the course web page.

http://www.cs.cornell.edu/courses/cs1110/2014fa/labs

When you are done, you should have the following three files.

• drawapp.py (the primary script to run the application)
• shapes.py (a support module, which you will not touch)
• lab10.py (the module that you must modify)

You should create a new directory on your hard drive and download all of
the files into that directory. Alternatively, you can get all of the files bundled
in a single ZIP file called lab10.zip from the Labs section of the course web
page. Open a command prompt and type

python drawapp.py

A figure like that on the right should appear in the window. Your command
prompt will fill with the usual messages from Kivy. In addition, you should
see some test ouput about the various shapes that are drawn in the window.

Getting Credit for the Lab. All of the activities in this lab involve modifying the file lab10.py.
There is no unit test for this lab. When you are done, show this file to your instructor. You
instructor will then swipe your ID card to record your success. You do not need to submit the
paper with your answers, and you do not need to submit the computer files anywhere.

As with the previous lab, if you do not finish during the lab, you have until the beginning of
lab next week to finish it. You should always do your best to finish during lab hours. Remember
that labs are graded on effort, not correctness.

Course authors: D. Gries, L. Lee, S. Marschner, W. White

1

http://www.cs.cornell.edu/courses/cs1110/2014fa/labs/lab10.pdf
http://www.cs.cornell.edu/courses/cs1110/2014fa/labs


1. Understanding the Application

Before you get started on this lab, we should first describe a bit how drawapp works. If you
open it up you will notice that it contains two classes. The first is DrawApp; it is a subclass of the
Kivy class App and has a single important method: run(). This run() method is called in the
application code of this module, and is what opens up a new Window.

By itself, DrawApp just draws a blank window. The second class, Panel represents the con-
tents of the Window, and it is responsible for drawing the figure above. When the application is
built, a Panel object is “placed inside” the Window. The initiliazer for Panel calls the function
draw shapes(), which is located in module lab09. This function draws the figure you see.

The function draw shapes() creates several objects, all of which are subclasses of class Shape.
The Shape class, which is defined in the module shapes.py, contains information about the position
of the shape, as well as its size and geometry. When we call the Panel method draw(), the shape
is added to the panel and remains there until you quit the application.

The values of x and y, as well as the side lengths, are given in pixels. Unlike the Rectangle object
on the exam, Pixels in this application are indexed by integer coordinates starting at the bottom
left corner, as follows:

...

(0,2) (1,2) (2,2) ...

(0,1) (1,1) (2,1) ...

(0,0) (1,0) (2,0) ...

In a pixel coordinate (x,y), x is the horizontal coordinate; it increases from left to right. Similarly,
y is the vertical coordinate; it increases from bottom to top.

When working with graphics, each shape is going to have its own drawing code. That is why
we never actually make objects of class Shape. Instead, we create subclasses of Shape for specific
shapes, and work with those instead. In this lab, we are working with the following classes:

Class Subclass Of Description
Line Shape Line segment between two points.
Parallelogram Shape Four sided shape where each pair of opposing sides is parallel.
Rhombus Parallelogram Parallelogram where all four sides are equal length.
Square Rhombus Rhombus where all angles are right angles.

You should now look at the documentation of Parallelogram (which is in shapes.py) to see
how it works. You can either look at the source code directly, or import the module and use
the help() function as shown in class. You should pay particular attention to the concept of the
“leaning factor” in the definition of a parallelogram.

You are welcome to look at the other the classes in shapes.py; particularly the base class Shape.
However, you will notice that it contains a lot of Kivy code. We are not going to explain this code,
and you do not need to understand it to do the lab.

2



2. Lab Instructions

This lab is broken up into four tasks. The first three are rather short, though you might want
to review the presentation slides for Lecture 18.

Task 1: Complete the Initializers.

The image in the window is incomplete. Only Parallelogram and Line

draw properly. That is because the initializers in Rhombus and Square are
unfinished. If you open the lab09.py file, you will see that both of their
init methods are empty.

This is unacceptable. In order to initialize properly, each of these subclasses
must call the init method in their parent class as a helper function.
Fortunately,the class Parallelogram does all the work for drawing, so that
is the only thing we need to do.

We showed how to do this in class. Simply call the method init as an
explicit function in the parent class. If you are unclear on how to do this,
open up shapes.py and look at the class Line and Parallelogram. See how
it works?

Use this technique to complete the initializers of Rhombus and Square.
Each initializer should be a single line using and explicit call to init in
the parent class. When you are done, run drawapp.py as a script again. You should now get the
image on the right.

Task 2: Add Getters and Setters to Rhombus.

Neither the class Rhombus nor the class Square has any new instance attributes beyond those
inherited from Parallelogram. This should be obvious from how simple the initializers are.

The class Parallelogram has getters for each instance attribute (e.g. the getter getL1 for
instance attribute l1 and so on). You will notice that there are no setters. The lack of setters is
because these shapes have complicated invariants. For example, in Rhombus, the attributes l1 and
l2 must be equal at all times. We cannot allow a user tochange just one of these, as that would

break the invariant.

With that said, there would be no problem if we could guarantee that whenever a user changes
one of l1 or l2, the other changes automatically. To do this we are going to create a getter and
setter for a new “virtual” attribute side. You should not create an attribute called side.
Instead, this getter and setter will “group” the existing attributes l1 and l2 together.

The getter for side should return either attribute l1 or attribute l2. It does not matter.

The setter for side should have a second parameter after self. Suppose we name that parameter
value. In that case, the setter

• Asserts that value satisfies the class invariant for l1 and l2

• Assigns value to both attributes l1 and l2

Implement this getter and setter. If you cannot remember the syntax, look at the slides in Lecture
18 covering getters and setters.

3



Task 3: Add Some Methods to Square.

When you added the getSide() method to Rhombus you might have noticed that it changed
what was being printed out when you ran drawapp.py. That is because getSide() was used in
the str method.

The class Square has a similar problem. Right now, nothing is printed out at all for the Square

objects. That is because the str method is empty. You need to implement it.

In creating a string for a square object, we want you to give the x and y position, the side-length,
and the area. For example, when you complete the implementation of str , and run drawapp.py,
you should see the following:

square at (95, 69), side 60, area 3600

To see how to do this, look at the implementation of str in Rhombus. Your solution will be very
similar. Notice that this method invokes the str method in Shape to get the x and y position,
as that is the class that first defines these attributes.

Your implementation of str requires that you implement the method area that has been
provided. You should implement this as well.

Task 4: Add Some Arms.

The shape above looks almost like a person. It has a head
(the Parallelograms), a body (the Square), and some legs (the
Rhombuses). You will give the person arms. All the changes you
will make will be in the function draw shapes(). This function takes
a Panel as an argument and adds multiple shapes to it. Read through
this function now.

Once you have read the function, you should comment out the code
that produces the two black lines. Hint: Look for where the shape
color is set to black.

Each arm is should be a green rectangle that is 60 pixels long and
20 pixels high. Its leaning factor (field d of class Parallelogram) is 0,
which means that it is a rectangle. The leaning factor is defined in
the specification of Parallelogram. Later, when you get the program
going with leaning factor 0, you can try a different leaning factor, say
15, and see what it looks like.

The arms should be attached at the top right and top left of the square that makes up the body.
The tops of the arms should be parallel to the top line of the square. When done, it should look
like the image to the right.

In writing the code that draws rectangles, use the variables that are defined at the top of function
draw shapes(). Use variables to contain all the constants that you need, as we did in functions
draw shapes(). You should avoid using numbers directly in the constructor Parallelogram.

Hint: To determine the arm coordinates, look at the position of the green square. For debugging
purposes, you may want to include print statements for the objects you create, as we did.

When you are finished, show lab10.py to your instructor.

4


	Lab Materials
	Getting Credit for the Lab
	1. Understanding the Application
	2. Lab Instructions
	Task 1: Complete the Initializers
	Task 2: Add Getters and Setters to Rhombus
	Task 3: Add Some Methods to Square
	Task 4: Add Some Arms


