
Classes and Subclasses	


Review 2	
	




Class Definition	


class <name>(<superclass>):

    """Class specification"""

    getters and setters

    initializer (__init__)

    definition of operators

    definition of methods

    anything else

12/8/13	
 Review 2	
 2	


   • Every class must  ���
      extend something	

   • Mosts classes will���
      extended object

Class type to extend	

(may need module name)	




Attribute Invariants	


•  What are the attribute invariants below? 	

•  Why are they there? 	


class Time(object): 
    """An instance is a time of day
        hr: hour of the day [int in range 0..23]
        min: minute of the hour [int in range 0..59]

    """
    …
12/8/13	
 Review 2	
 3	




Attribute Invariants	


•  Attribute invariants are important for programmer	

§  Can look at them when writing methods	

§  Any reader of the code will benefit as well	


class Time(object): 
    """An instance is a time of day
        hr: hour of the day [int in range 0..23]
        min: minute of the hour [int in range 0..59]

    """
    …
12/8/13	
 Review 2	
 4	




Enforcing Invariants	


•  Attribute invariants are the purpose of constructors	

•  They initialize the attributes to satisfy invariants	

class Time(object): 
    …
    def __init__(self,t):
        """Initializer: makes an instance with time t, 
        in minutes, in range 0..24*60-1"""
        self.hr   = t / 60 
        self.min = t % 60
•  Without seeing the invariants, might write self.min = t
12/8/13	
 Review 2	
 5	




Enforcing Invariants	


•  Restrict attribute access	

§  Make attributes hidden	

§  Force access through 

methods: getter & setter	

•  Getter: Read attribute	


§  Just return attribute	

•  Setter: Change attribute	


§  Checks that new value 
satisfies the invariant	


§  If so, changes attribute	


class Time(object):
     """Instance Attributes:
          _hr  [int in range 0..23]

    _min [int in range 0..59]"""
    …
    def getHour(self):
        """Returns: hour of the day"""
        return self._hr


    def setHour(self,value):
        """Sets hour to value"""
        assert type(value) == int
        assert value >= 0 and value <= 23
        self._hr = value�



12/8/13	
 Review 2	
 6	




Special Methods	


•  Start/end with underscores
§  __init__ for initializer
§  __str__ for str()
§  __repr__ for backquotes

•  Actually defined in object
§  You are overriding them	

§  Many more of them	


•  For a complete list, see	

http://docs.python.org/
reference/datamodel.html

class Point(object):
     """Instances are points in 3D space"""�
     …


    def __init__(self,x=0,y=0,z=0):
        """Initializer: makes new Point"""
        …


    def __str__(self):
        """Returns: string with contents""”
        …


    def __repr__(self):
        """Returns: unambiguous string""”
        …

12/8/13	
 Review 2	
 7	




Modified Question from Fall 2010	


•  An object of class Course (next slide) maintains a 
course name, the instructors involved, and the list of 
registered students, sometimes called the roster. 	

1.  State the purpose of an initializer. Then complete the ���

body of the initializer of Course, fulfilling this purpose.	

2.  Complete the body of method add of Course
3.  Complete the body of method __eq__ of Course. If you ���

write a loop, you do not need to give a loop invariant.	

4.  Complete the body of method __ne__ of Course.���

Your implementation should be a single line.	


12/8/13	
 Review 2	
 8	




Modified Question from Fall 2010	

class Course(object):
    """An instance is a course at Cornell. 
    Maintains the name of the course, the roster 
    (list of netIDs of students registered for it), 
    and a list of netIDs of instructors.
        name: Course name [str]
        instructors: instructor net-ids�
                           [nonempty list of string]
        roster: student net-ids
                   [list of string, canbe empty]"""
   
    def __init__(self,name,b):
        """Instance w/ name, instructors b, no students. 
        It must COPY b.  Do not assign b to instructors.
        Pre: name is a string, b is a nonemepty list"""
        # IMPLEMENT ME

     def add(self,n):
        """If student with netID n is not in roster, add 
        student. Do nothing if student is already there.
        Precondition: n is a valid netID."""
        # IMPLEMENT ME

    def __eq__(self,ob):
        """Return True if ob is a Course with the same 
        name and same set of instructors as this;
        otherwise return False"""
        # IMPLEMENT ME
    
    def __ne__(self,ob):
        """Return False if ob is a Course with the same   
        name and same set of instructors as this;
        otherwise return True"""
        # IMPLEMENT ME IN ONE LINE

12/8/13	
 Review 2	
 9	




Modified Question from Fall 2010	


1.  State the purpose of a initializer. Complete the body of 
the constructor of Course, fulfilling this purpose.	

§  The purpose is to initialize instance attributes so that the 

invariants in the class are all satisfied.	


     def __init__(self,name,b):
        """Instance w/ name, instructors b, no students. 
        Pre: name is a string, b is a nonemepty list"""
        self.name = name
        self.instructors = b[:]  # Copies b
        self.roster = []            # Satisfy the invariant!	


12/8/13	
 Review 2	
 10	




Modified Question from Fall 2010	


2.  Complete the body of method add of Course
     def add(self,n):
        """If student with netID n is not in roster, add 
        student. Do nothing if student is already there.
        Precondition: n is a valid netID."""
        if not n in self.roster:
            self.roster.append(n)	


12/8/13	
 Review 2	
 11	




Modified Question from Fall 2010	


3.  Complete body of method __eq__ of Course. 	

     def __eq__(self,ob):
        """Return True if ob is a Course with the same name and same   
        set of instructors as this; otherwise return False"""
        if not (isinstance(ob,Course)):
            return False
        # Check if instructors in ob are in this
        for inst in ob.instructors:
            if not inst in self.instructors:
                return False
        # If instructors of ob are those in self, same if length is same
        return self.name==ob.name and len(self.instructors)==len(ob.instructors)	


12/8/13	
 Review 2	
 12	




Modified Question from Fall 2010	


4.  Complete body of method __ne__ of Course.���
Your implementation should be a single line.	


    def __ne__(self,ob):
        """Return False if ob is a Course with the same  name and  
        same set of instructors as this; otherwise return True"""
        # IMPLEMENT ME IN ONE LINE
        return not self == ob # Calls __eq__

12/8/13	
 Review 2	
 13	




Modified Question from Fall 2010	


•  An instance of Course always has a lecture, and it may 
have a set of recitation or lab sections, as does CS 1110. 
Students register in the lecture and in a section (if there 
are sections). For this we have two other classes: 
Lecture and Section. We show only components that 
are of interest for this question	


•  Do the following:	

§  Complete the constructor in class Section	

§  Complete the method add in Section	


•  Make sure invariants are enforced at all times	


12/8/13	
 Review 2	
 14	




Modified Question from Fall 2010	

class Lecture(Course):
    """Instance is a lecture, with list of sections
        seclist: sections associated with lecture.
                    [list of Section; can be empty]
    """

    def __init__(self, n, ls):
        """Instance w/ name, instructors ls, no students. 
        It must COPY ls.  Do not assign ls to instructors.
        Pre: name is a string, ls is a nonemepty list"""
        Course.__init__(self, n, ls)
        self.seclist = []

class Section(Course):
    """Instance is a section associated w/ a lecture""”
        mainlecture: lecture this section is associated.
                            [Lecture; should not be None]"""

    def __init__(self, n, ls, lec):
        """Instance w/ name, instructors ls, no  
        students AND primary lecture lec.   
        Pre: name a string, ls list, lec a Lecture"""
        # IMPLEMENT ME

    def add(self,n):
        """If student with netID n is not in roster of 
        section,  add student to this section AND the 
        main lecture.  Do nothing if already there.
        Precondition: n is a valid netID."""
        # IMPLEMENT ME

12/8/13	
 Review 2	
 15	




Modified Question from Fall 2010	

    def __init__(self, n, ls, lec):
        """Instance w/ name, instructors ls  
        no students AND main lecture lec.   
        Pre: name a string, ls list, 
        lec a Lecture"""
        Course.__init__(self,n,ls)
        self.mainlecture = lec
  

    def add(self,n):
        """If student with netID n is not in 
        roster of section,  add student to 
        this section AND the main lecture.  
        Do nothing if already there.
        Precondition: n is a valid netID."""
        # Calls old version of add to 
        # add to roster
        Course.add(self,n)
        # Add to lecture roster
        self.mainlecture.add(n)

12/8/13	
 Review 2	
 16	




Diagramming Subclasses	


12/8/13	
 17	
Review 2	


	
Important Details:	

§  Draw a line from subclass 

to the parent class	

§  Do not duplicate inherited 

methods and attributes 	

§  Include initializer and 

operators with methods	

§  Method parameters are 

always optional	

§  Class attributes are a box 

with (current) value 	


superclass-name 

Declared in Superclass: 
      Class Attributes 
      Method Names 

subclass-name 

Declared in Subclass: 
      Class Attributes 
      Method Names 



Example: Class Point	


12/8/13	
 18	
Review 2	


object 

__init__()
__str__()
….

Point(object) 

__init__(x=0.0,y=0.0,z=0.0)
__str__()
distanceTo()

	

	

	

	

	

	


id1 

x 0.0

Point 

y 0.0

z 0.0

Supports the ���
default constructor	


Default str() ���
(and `) behavior	


Override original 
methods in object	


Object Folder	


Class Folders	




Example: Class Point	


12/8/13	
 19	
Review 2	


object 

__init__()
__str__()
….

Point(object) 

__init__(x=0.0,y=0.0,z=0.0)
__str__()
distanceTo()

	

	

	

	

	

	


id1 

x 0.0

Point 

y 0.0

z 0.0

Because it is always 
there, typically omit���
the object partition



Two Example Classes	

class A(object): 
    x=3
    y=5
    def __init__(self,y):
       self.y = y


    def f(self):
       return self.g()


    def g(self):
       return self.x+self.y


class B(A): 
    y=4
    z=10
    def __init__(self,x,y):
       self.x = x
       self.y = y
    

    def g(self):
       return self.x+self.z
    

    def h(self):
       return 42

Review 2	
 20	


Execute:	

>>> a = A(1)
>>> b = B(7,3)



Example from Fall 2013	


12/8/13	
 21	
Review 2	


A 

__init__()
f()
g()

B 

x 3
y 5

__init__()
h()
g()

y 4
z 10

	

	

	

	

	

	


id3 

x 7

B 

y 3

	

	

	

	

	

	


id2 

y 1

A 

a id2 b id3

Execute:	

>>> a = A(1)
>>> b = B(7,3)



Example from Fall 2013	


12/8/13	
 22	
Review 2	


A 

__init__()
f()
g()

B 

x 3
y 5

__init__()
h()
g()

y 4
z 10

	

	

	

	

	

	


id3 

x 7

B 

y 3

	

	

	

	

	

	


id2 

y 1

A 

a id2 b id3

What is…	

(1) a.y      1            (2) a.z      ERROR
(3) b.x      7            (4) B.x     3



Example from Fall 2013	


12/8/13	
 23	
Review 2	


A 

__init__()
f()
g()

B 

x 3
y 5

__init__()
h()
g()

y 4
z 10

	

	

	

	

	

	


id3 

x 7

B 

y 3

	

	

	

	

	

	


id2 

y 1

A 

a id2 b id3

What is…	

(1) a.y      1            (2) a.z      ERROR
(3) b.x      7            (4) B.x     3



Example from Fall 2013	


12/8/13	
 24	
Review 2	


A 

__init__()
f()
g()

B 

x 3
y 5

__init__()
h()
g()

y 4
z 10

	

	

	

	

	

	


id3 

x 7

B 

y 3

	

	

	

	

	

	


id2 

y 1

A 

a id2 b id3

What is…	

(1) a.f()    4            (2) a.h()      ERROR
(3) b.f()    17    X    (4) A.g(b)    17



Example from Fall 2013	


12/8/13	
 25	
Review 2	


A 

__init__()
f()
g()

B 

x 3
y 5

__init__()
h()
g()

y 4
z 10

	

	

	

	

	

	


id3 

x 7

B 

y 3

	

	

	

	

	

	


id2 

y 1

A 

a id2 b id3

What is…	

(1) a.f()    4            (2) a.h()      ERROR
(3) b.f()    17    X    (4) A.g(b)    10


