
PREPARING FOR THE FINAL EXAM

CS 1110: FALL 2014

This handout explains what you have to know for the final exam. Most of the exam will include topics from
the previous two prelims. We have uploaded the solutions to each of these exams into CMS. Just click on
the link for each exam.

In addition, the final will cover multidimensional lists and loop invariants, which you should now be familiar
with after Assignment 6. Unlike previous years, we do not expect you to memorize any sequence
algorithms this year. Instead, you will be given an arbitrary problem with an invariant and expected to
either write the algorithm or modify an incorrect one. We have more details on this below.

1. Exam Information

The exam will be held Wednesday, December 17th from 2:00-4:30 pm. Our rooms are different once
again. This time, we are in Barton Hall - East and Center. The set-up will be tables, with three to a table.
You should report to Barton as follows:

• Students with last names A – Le meet in Barton Hall Center
• Students with last names Li – Z meet in Barton Hall East

Review Sessions. Unlike the prelims, there will be multiple review sessions for this final. There is a total
of nine review sessions, each lasting one hour. You are free to attend as few or as many as you wish.

The review session topics (and the TA, consultants running them) are as follows:

Sunday, December 7nd: Gates G01

• 2 – 3pm: Call Frames and Diagramming Objects (Daniel Rong)
• 3 – 4pm: Classes and Subclasses (Travis Westura)
• 4 – 5pm: Exceptions and Try-Except (Hyung Joo Park)

Monday, December 8rd: Gates G01

• 1 – 2pm: Lists and Sequences (Alec Regulinski)
• 2 – 3pm: Recursion (Ryan O’Hern)
• 3 – 4pm: Open Question Session (Walker White)

Tuesday, December 9th: Gates G01

• 1 – 2pm: Loop Invariants (Dongwook Yoon)
• 2 – 3pm: Sequence Algorithms (Walker White)
• 3 – 4pm: Open Question Session (Walker White)

1

2 CS 1110: FALL 2014

2. Exam Topics

The final exam will last 2 and a half hours, and will cover of seven questions (after the traditional first
question requiring your name and net-id). This makes it two more questions than a normal prelim. These
seven questions are chosen as follows:

Class Implementation and Object Diagrams. This question will be similar to Problems 2 and 5 from
the last prelim (now as a single question). You will be expected to finish the implementation of an incomplete
class. You will then be given a sequence of assignment statements regarding this class; you are to diagram
the memory representation (e.g. heap space, global space, etc.) for these statements.

Once again, there are no properties on this exam. There will only be traditional setters and getters.

Call Frames. You will be given the definition of one or more functions. You will be expected to draw the
call frame (for a single function) or a call stack (for more than one function). The question might ask you to
draw a call frame/stack at a single point in time or as it evolves over time. Look at Problem 5 from the first
prelim. You should be prepared to answer this question for a recursive function, such as the one in Problem
5 on the Fall 2013 final.

Recursion/Iteration. You will be given the specification of a function that requires iteration and/or
recursion. You will be asked to implement that function. This question will be similar to Problems 3 and 4
from the second prelim. Please review all of the recursion questions on the previous exams.

Multidimensional-Lists. We have not had an exam question about two dimensional lists, even though
you have had some experience with them in Assignment 6. We can guarantee that there will be a question
like this on the final. To study for this question, you should look at Problem 6 on the Fall 2012 final. We
will also have more example at the lists review session on Tuesday.

Loop Invariants. You will be given a specification for a function that involves a while-loop (as well as
some skeleton code). We will then ask you one (or possibly two) of three types of questions:

(1) Given a loop invariant, write the body of the loop so that it satisfies the invariant.
(2) Given a loop invariant and corresponding code, identify any errors that are in the code.
(3) Given a loop example with a postcondition and precondition, write the corresponding loop invariant.

For the first type of question, study Problem 6 of the Fall 2013 final, or Problem 6 of the Spring 2014 final.
For the second type of question, see Problem 6 on the Spring 2014 prelim 2 or Problem 6 on the Spring 2013
final.

The final type of question is the one that is a bit unusual. The closest thing we have to it on previous exams
is part (a) on Problem 7 on both the Fall 2012 and 2013 finals. However, this required that you remember
the algorithms shown in lecture. This type of question is a new possibility this year, and it will be covered
in the final review session on Tuesday (before the Open Questions).

Testing, Debugging, and Exceptions. You should review Problem 4 from the first prelim. You should
also look at Problem 5 from the final last Fall semester. We have not had a long exam question on exceptions
this year, so we are a bit overdue. They will be on this exam in some form or fashion. We may also ask you
to write a smal bit of code that uses a try-except block.

PREPARING FOR THE FINAL EXAM 3

Short Answer and Poutporri. This section will be similar to the first question from the first prelim. It
will have short questions that do not belong anywhere else, focusing primarily on terminology.

3. Terminology and Important Concepts

Here, for your convenience is the list of terminology from the past two exams, as well as the new terminology
since the last prelim. You should know the following terms, backward and forward. Wishy-washy definitions
will not get much credit. Learn these not by reading but by practicing writing them down, or have a friend
ask you these and repeat them out loud. You should be able to write programs that use the concepts defined
below, and you should be able to draw objects of classes and frames for calls.

Accumulator. An accumulator is a fancy name for a variable in a for-loop that stores information computed
in the for-loop and which will be still available when the for-loop is complete.

Example: In the for loop
total = 0
for x in range(5):

total = total + x

the variable total is an accumulator. It stores the sum of the values 0..4.

Assert Statement. A statement of the form

assert <boolean-expression>

or

assert <boolean-expression>, <string-expression>

If the boolean expression is true, an assert statement does nothing. If it is false, it produces an error, stopping
the entire program. In the second version of assert, it uses the string expression after the comma as its error
message.

Example:

assert 1 > 2, 'My Message'

This command crashes Python (because 1 is not greater than 2), and provides 'My Message' as the error
message.

Assertion. An assertion is a property of a program (as in the traditional notion of property, not a
Python @property) that is either true or false. It represents a claim that must be true if the code is running
correctly at that point. Assertions may be implemented as assert statements, but they do not have to be;
more often than not, they are implemented as comments.

4 CS 1110: FALL 2014

Attribute. Attributes are variables that are stored inside of an object. Instance attributes belong to an
object or instance. Instance attributes are created by assignment statement that prefaces the object name
before the period. They are typically created in the class initializer.

Class attributes belong to the class. They are created by an assignment statement that prefaces the class
name before the period. They are also created by any assignment statement in the class definition that is
outside of a method definition.

It is impossible to enforce invariants on attributes as any value can be stored in an attribute at any time.
Therefore, we prefer to make attributes hidden (by starting their name with an underscore), and replacing
them with getters and setters.

Example: If the variable color stores an RGB object, then the assignment color.red = 255 alters the red
instance attribute. The assignment RGB.x = 1 would create a class attribute x.

Attribute Invariant. See invariant.

Bottom-Up Rule. This is the rule by which Python determines which attribute or method definition to
use (when the attribute is used in an expression, or the method is called). It first looks in the object folder.
If it cannot find it there, it moves to the class folder for this object. It then follows the arrows from child
class to parent class until it finds it. If Python reaches the folder for object (the superest class of all) and
still cannot find it, it raises an error.

If the attribute or method is in multiple folders, it uses the first one that it finds.

Call Frame. A call frame is a formal representation of that Python uses when you execute a function call.
It contains the name of the function as well as all parameters and local variables. It has also an instruction
counter that tracks the next line in the function that is to be executed. A call frame is deleted (e.g. erased)
as soon as the call completes.

Call Stack. The call stack is all of the call frames of the currently executing function calls (e.g. the main
function call and all of its helper functions). These call frames are arranged in a stack, with the original
function up top, and the most recent function call at the bottom. If the current function calls a helper
function, you add a new frame to the bottom. When a helper function completes, you remove the call frame
from the stack.

Class. A class is any type that is not built-in to Python (unlike int, float, bool, and str which are
built-in). A value of this type is called an object.

Class Definition. This is a template or blueprint for the objects (or instances) of the class. A class defines
the components of each object of the class. All objects of the class have the same components, meaning they
have the same attributes and methods. The only difference between objects is the values of their attributes.
Using the blueprint analogy, while many houses (objects) can be built from the same blueprint, they may
differ in color of rooms, wallpaper, and so on.

PREPARING FOR THE FINAL EXAM 5

In Python, class definitions have the following form:

class <classname>(<superclass>):
<class specification>
<getters and setters>
<initializer definition>
<method definitions>

In most cases, we use the built-in class object as the super class.

Class Invariant. See invariant.

Constructor. A constructor is a function that creates a object for a class. It puts the object in heap space,
and returns the name of the object (e.g. the folder name) so you can store it in a variable. A constructor
has the same name as the type of the object you wish to create.

When called, the constructor does the following:

• It creates a new object (folder) of the class, which is empty.

• It puts the folder into heap space.

• It executes the initializer method __init__ defined in the body of the class. In doing so, it

– Passes the folder name to that parameter self

– Passes the other arguments in order

– Executes the commands in the body of __init__

• When done with __init__ it returns the object (folder) name as final value of expression.

There are no return statements in the body of __init__; Python handles this for you automatically.

Example constructor call (within a statement) : color = RGB(255,0,255)

Example __init__ definition:

def __init__(self,x,y):
self.x = x
self.y = y

Default Argument. A default argument is a value that is given to a parameter if the user calling the
function or method does not provide that parameter. A default argument is specified by wording the
parameter as an assignment in the function header. Once you provide a default argument for a parameter,
all parameters following it in the header must also have default argumetns.

6 CS 1110: FALL 2014

Example:

def foo(x,y=2,z=3):...

In this example, the function calls foo(1), foo(1,0), foo(1,0,0), and foo(1,z=0) are all legal, while
foo() is not. The parameter x does not have default arguments, while y and z do.

Dispatch-on-Type. Dispatch-on-type refers to a function (or other Python command) that can take mul-
tiple types of input, and whose behavior depends upon the type of these inputs. Operator overloading is a
special kind of dispatch-on-type where the meaning of an operator, such as +, *, or /, is determined by the
class of the object on the left. Dispatch-on-type is also used by try-except statements.

Encapsulation. Encapsulation is the process of hiding parts of your data and implementation from users
that do not need access to that parts of your code. This process makes it easier for you to make changes
in your own code without adversely affecting others that depend upon your code. See the definitions of
interface and implementation.

Getter. A getter is a special method that returns the value of an instance attribute (of the same name)
when called. It allows the user to access the attribute without giving the user permission to change it. It is
an important part of encapsulation.

Example: If _minutes is an instance attribute in class Time, then the getter would be

class Time(object):
def getMinutes(self):

"""Return: _minutes attribute"""
return self._minutes

Global Space. Global space is area of memory that stores any variable that is not defined in the body of a
function. These variables include both function names and modules names, though it can include variables
with more traditional values. Variables in global space remain until you explicitly erase them or until you
quit Python.

Heap Space. Heap space is the area of memory that stores mutable objects (e.g. folders). It also stores
function definitions, the contents of modules imported with the import command, as well as class folders.
Folders in heap space remain until you explicitly erase them or until you quit Python. You cannot access
heap space directly. You access them with variables in global space or in a call frame that contain the name
of the object in heap space.

Immutable Attribute. An immutable attribute is a hidden attribute that has a getter, but no setter. This
implies that a user it not allowed to alter the value of this attribute. It is an important part of encapsulation.

Implementation. The implementation of a collection of Python code (either a module or a class) are the
details that are unimportant to other users of this module or class. It includes the bodies of all functions or
methods, as well as all hidden attributes and functions or methods. These can be changed at any time, as
long as they agree with the specifications and invariants present in the interface.

PREPARING FOR THE FINAL EXAM 7

Inheritance. Inheritance is the process by which an object can have a method or attribute even if that
method or attribute was not explicitly mentioned in the class definition. If the class is a subclass, then any
method or attribute is inherited from the superclass.

Interface. The interface of a collection of Python code (either a module or a class) is the information that
another user needs to know to use that module or class. It includes the list of all class names, the list
of all unhidden attributes and their invariants, and the list of all unhidden functions/methods and their
specifications. It does not include the body of any function or method, and any attributes that are hidden.
The interface is the hardest part of your program to make changes to, because other people rely on it in
order for their code to work correctly.

Instance. This is a synonym for an object. An object is an instance of a class.

Invariant. An invariant is an assertion that must always be true. The two types of invariants that we
have talked about in class are attribute invariants and loop invariants.

An attribute (or class) invariant is a property of an attribute in an instance (object) in a class. The property
must be true of the object after the constructor is finished; indeed, one of the purposes of a constructor is to
ensure that the attribute invariant is true. The attribute invariant must also be true before and after each
call to an instance method on the object.

A loop invariant is a property of variables (local, parameters, or attributes) used by a loop. A loop invariant
must be true both before and after a single execution of the body of the loop.

is. The is operator works like == except that it compares folder names, not contents. The meaning of the
operator is can never be changed. This is different from ==, whose meaning is determined by the special
operator method __eq__. If == is used on an object that does not have a definition for method __eq__, then
== and is are the same.

isinstance. The function call isinstance(ob,C) returns True if object ob is an instance of class C. This
is different than testing the type of an object, as it will return True even if the type of ob is a subclass of C.

List. A list is a mutable sequence that can hold values of any type. Lists are represented as a sequence
of values in square braces (e.g. [a1, a2, . . . , an]). A list can also hold other lists as well; this is how Python
represents mutli-dimensional lists and matrices. For example, [[1,2],[3,4]] is a 2x2 list in Python. See Lecture
13 for more information on multi-dimensional lists.

Loop Invariant. See invariant.

Method. Methods are functions that are stored inside of an object. They are define just like a function is
defined, except that they are (indented) inside-of a class defintion.

Example method toSeconds() :

class Time(object):
class with attributes minutes, hours
def toSeconds(self):

return 60*self.hours+self.minutes

8 CS 1110: FALL 2014

Methods are called by placing the object variable and a dot before the function name. The object before
the dot is passed to the method definition as the argument self. Hence all method definitions must have at
least one parameter.

Example: If t is a time object, then we call the method defined above with the syntax t.toSeconds(). The
object t is passed to self.

Object. An object is a value whose type is a class. Objects typically contain attributes, which are variables
inside of the object which can potentially be modified. In addition, objects often have methods, which are
functions that are stored inside of the object.

Operator Overloading. Operator overloading is the means by which Python evaluates the various operator
symbols, such as +, *, /, and the like. The name refers to the fact that an operator can have many different
“meanings” and the correct meaning depends on the type of the objects involved.

In this case, Python looks at the class or type of the object on the left. If it is a built-in type, it uses the
built-in meaning for that type. Otherwise, it looks for the associated special method (beginning and ending
with double underscores) in the class definition.

Overriding a Method. In a subclass, one can redefine a method that was defined in a superclass. This
is called overriding the method. In general, the overriding method is called. To call an overridden method
method of the superclass, use the notation

<parent class>.method(...)

where <parent class> is the name of the parent class.

Precondition. A precondition is an assertion that is placed before the start of a segment of code (e.g.
before a loop, or before the start of a function). It must be true in order for the code that follows to work
correctly.

Post Condition. A post condition is an assertion that is placed after the completion of a segment of code
(e.g. after a loop, or at the return statement in a function call). It is guaranteed to be true if the code
segment that procedes it is correct as specified.

Scope. The scope of a variable name is the set of places in which it can be referenced. Global variables
may be referenced by any function that which is either defined in the same module as the global variable,
or which imports that module; however, they cannot be reassigned in the body of a function. The scope of
a parameter or local variable is the body of the function in which it is defined. The scope of an attribute is
the same as the scope of the object that contains that attribute.

Sequence. A sequence is a type that represents a fix-length list of values. Examples of sequences are lists,
strings, and tuples.

PREPARING FOR THE FINAL EXAM 9

Subclass. A subclass D is a class that extends another class C. This means that an instance of D inherits
(has) all the attributes and methods that an instance of C has, in addition to the ones declared in D. In
Python, every user-defined class must extend some other class. If you do not explicitly wish to extend
another class, you should extend the built-in class called object (not to be confused with an object, which
is an instance of a class). The built-in class object provides all of the special methods that begin and end
with double underscores.

Tuple. A tuple is identical to a list except that it is immutable. The contents cannot be removed, expanded,
or otherwise altered. Tuples are represented as a sequence of values in parentheses (e.g. (a1, a2, . . . , an)).

Try-Except Statement. This is a statement of the form
try:

<statements>
except:

<statements>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it recovers and jumps over to except, where it executes all the statements underneath there.

Example:
try:

print 'A'
x = 1/0 print 'B'

except:
print 'C'

This code prints out 'A', but crashes when it divides 1/0. It skips over the remainder of the try (so it does
not print out 'B'). It jumps to the except and prints out 'C'.

There is an alternate version of try-except that only recovers for certain types of errors. It has the form

try:
<statements>

except <error-class>:
<statements>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it checks to see if the error object generated has class <error-class>. If so, it jumps over to except, where
it executes all the statements underneath there. Otherwise, the error propagates up the call stack where it
might recover in another except statement or not at all.

Example:
try:

print 'A'
x = 1/0 print 'B'

except ZeroDivisionError:
print 'C'

10 CS 1110: FALL 2014

This code prints out 'A', but crashes when it divides 1/0. The execution skips over the remainder of the
try (so it does not print out 'B'). Since the error is indeed a ZeroDivisionError, it jumps to the except
and prints out 'C'.

Suppose, on the other hand, the try-except had been
try:

print 'A'
x = 1/0 print 'B'

except AssertionError:
print 'C'

In this case, the code prints out 'A', but crashes when it divides 1/0 and does not recover.

Type. A type is a set of values and the operations on them. The basic types are types int, float, bool,
and str. The type list is like str, except that its contents are mutable. For more advanced types, see the
definition of class.

Variable. Depending on how you wish to think about it, a variable is a name with associated value or a
named box that can contain a value. We change the contents of a variable via an assignment statement. A
variable is created when it is assigned for the first time. We have seen four types of variables in this class:
global variables, local variables, parameters, and attributes.

A global variable is a variable which is assigned inside of a module, but outside of the body or header of any
function. The variable FREEZING_C that we saw in the module temperature.py is an example of a global
variable. Global variables last as long as Python continues to run.

A local variable is a variable which is not a parameter, but which is first assigned in the body of a function.
For example, in the function definition

def before_space(s):
pos = s.find(' ')
return s[:pos]

pos is a local variable. Local variables only exist in the context of a call frame.

A parameter is a variable in the parentheses of a function header. For example, in the function header

def after_space(s):

the parameter is the variable s. Parameters also only exist in the context of a call frame.

An attribute is a variable that is contained inside of a mutable object. In a point object, the attributes are
x, y, and z. In the RGB objects from Assignment 2, the attributes are red, green, and blue.

	1. Exam Information
	Review Sessions

	2. Exam Topics
	Class Implementation and Object Diagrams
	Call Frames
	Recursion/Iteration
	Multidimensional-Lists
	Loop Invariants
	Testing, Debugging, and Exceptions
	Short Answer and Poutporri

	3. Terminology and Important Concepts
	Accumulator
	Assert Statement
	Assertion
	Attribute
	Attribute Invariant
	Bottom-Up Rule
	Call Frame
	Call Stack
	Class
	Class Definition
	Class Invariant
	Constructor
	Default Argument
	Dispatch-on-Type
	Encapsulation
	Getter
	Global Space
	Heap Space
	Immutable Attribute
	Implementation
	Inheritance
	Interface
	Instance
	Invariant
	is
	isinstance
	List
	Loop Invariant
	Method
	Object
	Operator Overloading
	Overriding a Method
	Precondition
	Post Condition
	Scope
	Sequence
	Subclass
	Tuple
	Try-Except Statement
	Type
	Variable

