
Lecture	
 27:	
 4/30/13	

CS1110	
 Spring	
 2013:	
 Grab	
 Bag	
 1	

== versus is

class Card(object):

 def __init__(self, s, r):

 self.suit = s

 self.rank = r

 def __eq__(self, other):

 return (isinstance(other,Card) and

 (self.suit, self.rank) ==

(other.suit, other.rank))

 def __ne__(self, other):

 return not self.__eq__(other)

c = Card(3,2)

d = Card(3,2)

e = c

print c
 # <Card object at 0x100497b10>

print d
 # <Card object at 0x100497b50>

print c == d
True

print c is d
False

print e is c
True

•  When you define a class, you
might like to define what it
means for instances to be
equal. 	

•  To do this you define the
__eq__ and __ne__ methods
(overriding the default ones in
the class object).1	

•  But now what if you want to
tell if two cards are the same
object? Use is instead of ==.	

•  And, whenever you are really
talking about equality of object
identity, use is (e.g. is None).	

1Before you do this for real, read about __hash__.	

Dispatch on Type	

•  Sometimes you have an object that might be one of
several types, and you need to know which it is.	

•  Example: have list of GObject instances, want to turn
all the ellipses green and the rectangles blue. Leave the
other shapes alone. Simple enough:	

for shape in shapes:

if type(shape) is GEllipse:

shape.fillcolor = colormodel.GREEN

elif type(shape) is GRectangle:

shape.fillcolor = colormodel.BLUE

Finds any object whose class is
GEllipse. 	

Dispatch on Type	

•  Problem: some of your shapes might actually be
subclasses (in A7, a GEllipse might be the Ball).	

•  Solution: the built-in function isinstance. It answers the
question, “Is this object an instance of this class?” and
an instance of a subclass counts.	

for shape in shapes:

if isinstance(shape, GEllipse):

shape.fillcolor = colormodel.GREEN

elif isinstance(shape, GRectangle):

shape.fillcolor = colormodel.BLUE

Finds any object whose class is
GEllipse or a subclass of GEllipse. 	

Important example of type-based dispatch	

try:

 input = raw_input()

 x = float(input)

 print 'The next number is '+str(x+1)

except ValueError:

 print 'Hey! That is not a number!'

try:

 input = raw_input()

 x = float(input)

 print 'The next number is '+str(x+1)

except StandardError:

 print 'Hey! We had a problem!'

Matches any exception whose class
is ValueError or any subclass of
ValueError. 	

•  Exception handling effectively
uses isinstance to match
exceptions to exception
handlers.	

Matches any exception whose class is
StandardError or any subclass of StandardError
(including ValueError or IOError). 	

could raise IOError

could raise ValueError

 Recall: Hierarchy of exceptions	

Exception	

StandardError	

SystemExit	

AssertionError	

 ArithmeticError	

AttributeError	

 ValueError	

TypeError	

IOError	

…	

ZeroDivisionError	

 OverflowError	

 …	

Argument has
wrong type	

(e.g. float([1]))	

Argument has
wrong value	

(e.g. float('a'))	

http://docs.python.org/library/exceptions.html

Dispatch on Type vs. Method Overriding	

class Ball(object):

…

class SuperBall(Ball):

…

class BallOfClay(Ball):

…

…

if isinstance(my_ball, SuperBall):

 ball.vy = –0.99 * ball.vy

elif isinstance(my_ball, BallOfClay):

 ball.vy = –0.05 * ball.vy

else:

 ball.vy = –0.5 * ball.vy

class Ball(object):

 def rebound(self):

 self.vy = –0.5 * self.vy

…

class SuperBall(Ball):

 def rebound(self):

 self.vy = –0.99 * self.vy

…

class BallOfClay(Ball):

 def rebound(self):

 self.vy = –0.05 * self.vy

…

…

my_ball.rebound()

Lecture	
 27:	
 4/30/13	

CS1110	
 Spring	
 2013:	
 Grab	
 Bag	
 2	

Dictionaries (Type dict)	

Description	

•  List of key-value pairs	

§  Keys are unique	

§  Values need not be	

•  Example: net-ids	

§  net-ids are unique (a key)	

§  names need not be (values)	

§  js1 is John Smith (class ’13)	

§  js2 is John Smith (class ’16)	

•  Many other applications	

Python Syntax	

•  Create with format:���
{k1:v1, k2:v2, …}

•  Keys must be non-mutable	

§  ints, floats, bools, strings	

§  Not lists or custom objects	

•  Values can be anything	

•  Example:���

d = {'js1':'John Smith',�
 'js2':'John Smith',�
 'wmw2':'Walker White'}

Using Dictionaries (Type dict)	

•  Access elts. like a list	

§  d['js1'] evaluates to 'John'

§  But cannot slice ranges!	

•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'

§  Can add new keys	

§  d['aa1'] = 'Allen'

§  Can delete keys	

§  del d['wmw2'] �

d = {'js1':'John','js2':'John',�
 'wmw2':'Walker'}

	

	

	

	

	

	

	

'wmw2'

id0	

'John'	

'John'	

'Walker'	

dict	

'js2'

'js1'

Key-Value order in ���
folder is not important	

 id0	

d

Using Dictionaries (Type dict)	

•  Access elts. like a list	

§  d['js1'] evaluates to 'John'

§  But cannot slice ranges!	

•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'

§  Can add new keys	

§  d['aa1'] = 'Allen'

§  Can delete keys	

§  del d['wmw2'] �

d = {'js1':'John','js2':'John',�
 'wmw2':'Walker'}

	

	

	

	

	

	

	

'wmw2'

id0	

'John' 'Jane'	

'John'	

'Walker'	

dict	

'js2'

'js1'

Key-Value order in ���
folder is not important	

✗	

 id0	

d

Using Dictionaries (Type dict)	

•  Access elts. like a list	

§  d['js1'] evaluates to 'John'

§  But cannot slice ranges!	

•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'

§  Can add new keys	

§  d['aa1'] = 'Allen'

§  Can delete keys	

§  del d['wmw2'] �

d = {'js1':'John','js2':'John',�
 'wmw2':'Walker'}

	

	

	

	

	

	

	

'wmw2'

id0	

'Jane'	

'John'	

'Walker'	

dict	

'js2'

'js1'

'aa1'
 'Allen'	

 id0	

d

Using Dictionaries (Type dict)	

•  Access elts. like a list	

§  d['js1'] evaluates to 'John'

§  But cannot slice ranges!	

•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'

§  Can add new keys	

§  d['aa1'] = 'Allen'

§  Can delete keys	

§  del d['wmw2'] �

d = {'js1':'John','js2':'John',�
 'wmw2':'Walker'}

	

	

	

	

	

	

	

'wmw2'

id0	

'Jane'	

'John'	

'Walker'	

dict	

'js2'

'js1'

'aa1'
 'Allen'	

✗	

 ✗	

Deleting key deletes both	

 id0	

d

Dictionaries and For-Loops	

•  Dictionaries != sequences	

§  Cannot slice them	

§  Cannot use in for-loop	

•  But have methods to give
you related sequences	

§  Seq of keys: d.keys()

§  Seq of values: d.values()

§  Seq of key-value pairs:���

d.items()

•  Use these in for-loops	

for k in d.keys():�
 print k�
 print d[k]�

for v in d.values():�
 print v

for k,v in d.items():�
 print k�
 print v

