== versus is

class Card(object):

def __init__(self, s, 1):
self.suit = s
self.rank = r

def __eq__(self, other):
return (isinstance(other,Card) and
(self.suit, self.rank) ==
(other.suit, other.rank))

def __ne__(self, other):
return not self.__eq__(other)

¢ = Card(3,2)

d = Card(3,2)

e=c¢

print ¢ # <Card object at 0x100497b10>
print d # <Card object at 0x100497b50>
printc==d # True

printcisd # False

printeisc # True

* When you define a class, you
might like to define what it
means for instances to be
equal.

* To do this you define the
__eq__and __ne__ methods
(overriding the default ones in
the class object).'

* But now what if you want to
tell if two cards are the same
object? Use is instead of ==.

¢ And, whenever you are really
talking about equality of object
identity, use is (e.g. is None).

"Before you do this for real, read about __hash__.

Dispatch on Type

* Problem: some of your shapes might actually be
subclasses (in A7, a GEllipse might be the Ball).

* Solution: the built-in function isinstance. It answers the
question, “Is this object an instance of this class?” and
an instance of a subclass counts.

for shape in shapes:

if isinstance(shape, GEllipse):

Finds any object whose class is
GEllipse or a subclass of GEllipse.

shape.fillcolor = colormodel. GREEN
elif isinstance(shape, GRectangle):
shape.fillcolor = colormodel. BLUE

Recall: Hierarchy of exceptions

SystemEXxit StandardError

Argument has
wrong type
(e.g. float([1]))

Argument has
wrong value
(e.g. float('a’))

| AssertionError ” AttributeError ” ArithmeticError ” IOError | TypeError

ValueError

|ZeroDivisionError ” OverflowError |

http://docs.python.org/library/exceptions.html

CS1110 Spring 2013: Grab Bag

Lecture 27: 4/30/13

Dispatch on Type

* Sometimes you have an object that might be one of
several types, and you need to know which it is.

» Example: have list of GObject instances, want to turn
all the ellipses green and the rectangles blue. Leave the
other shapes alone. Simple enough:

if type(shape) is GEllipse:

shape.fillcolor = colormodel. GREEN
elif type(shape) is GRectangle:
shape.fillcolor = colormodel. BLUE

Important example of type-based dispatch

* Exception handling effectively
try: uses isinstance to match
input = raw_input() exceptions to exception
x = float(input) handlers.
print 'The next number is '+str(x+1)
except ValueError:

Matches any exception whose class
is ValueError or any subclass of
print 'Hey! That is not a number!' ValueError.

Y could raise I0Error
input = raw_input()
x = float(input) could raise ValueError

print 'The next number is +str(x+1)
except StandardError:
print 'Hey! We had a problem!'

Matches any exception whose class is
StandardError or any subclass of StandardError
(including ValueError or I0Error).

Dispatch on Type vs. Method Overriding

class Ball(object): class Ball(object):
def rebound(self):
class SuperBall(Ball): self.vy = -0.5 * self.vy
class SuperBall(Ball):

def rebound(self):

self.vy = -0.99 * self.vy

class BallOfClay(Ball):

if isinstance(my_ball, SuperBall):
ball.vy = -0.99 * ball.vy

elif isinstance(my_ball, BallOfClay):
ball.vy = —0.05 * ball.vy

else:
ball.vy = -0.5 * ball.vy

class BallOfClay(Ball):
def rebound(self):
self.vy = -0.05 * self.vy

my_ball.rebound()

Dictionaries (Type dict)

Description Python Syntax

¢ Create with format:
{kl:vl, kR:ve, ...}
* Keys must be non-mutable
= ints, floats, bools, strings
= Not lists or custom objects

e List of key-value pairs
= Keys are unique
= Values need not be

e Example: net-ids
= net-ids are unique (a key)
= names need not be (values)
= js1is John Smith (class "13) ¢ Example:
= js2 is John Smith (class *16) d={Js1*John Smith,

L. 'js"'John Smith',
* Many other applications "wimw' Walker White'}

¢ Values can be anything

Using Dictionaries (Type dict)

* Access elts. like a list
= d['js1'] evaluates to 'John'
= But cannot slice ranges!

d = {'js1"'John','jsR"'John',
'‘wmwR":'Walker'}
¢
dict

Y
!

Key-Value order in J

L. . ido
¢ Dictionaries are mutable

= Can reassign values

= d['js1'] = 'Jane'

= Can add new keys

= d['aal'] = 'Allen’

= Can delete keys t

= del d['wmwR'] folder is not important

Using Dictionaries (Type dict)

* Access elts. like a list
= d['js1'] evaluates to 'John'
= But cannot slice ranges!

d = {'js1"'John',jsR"'John',
'‘wmw?'":'Walker'}
* Dictionaries are mutable a0
= Can reassign values
= d['js1'] = 'Jane'
= Can add new keys
= d['aal'] ='Allen'
= Can delete keys
= del d['wmw?']

'wrﬂv?.’ 'Wajer'
al

[Deleting key deletes both]

CS1110 Spring 2013: Grab Bag

Lecture 27: 4/30/13

Using Dictionaries (Type dict)

* Access elts. like a list
= d['js1'] evaluates to 'John'
= But cannot slice ranges!
* Dictionaries are mutable
= Can reassign values
= d['js1'] = 'Jane'
= Can add new keys
= d['aal']="Allen'
= Can delete keys
= del d['wmw?&']

d = {!js1"'John',jsR"'John’,
'wmw®":'Walker'}

Key-Value order in
folder is not important

Using Dictionaries (Type dict)

* Access elts. like a list
= d['js1'] evaluates to 'John'
= But cannot slice ranges!
* Dictionaries are mutable
= Can reassign values
= d['js1'] = 'Jane'
= Can add new keys
= d['aal']="Allen'
= Can delete keys
= del d['wmwg?']

d = {!js1"'John',jsR"'John’,
'wmw&":'Walker'}

Dictionaries and For-Loops

 Dictionaries != sequences
= Cannot slice them
= Cannot use in for-loop
* But have methods to give
you related sequences
= Seq of keys: d.keys()
= Seq of values: d.values()
= Seq of key-value pairs:
d.items()
* Use these in for-loops

for k in d.keysQ:
‘ print k
print d[k]

for v in d.values():
‘ print v

for k,v in d.items(Q):
print k
print v

