
Lecture	
 26:	
 4/24/13	

CS1110	
 Spring	
 2013:	
 Event-­‐driven	

Programming	
 1	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 26: Subclasses in Event-driven Programs	

CS 1110

A7	

…is out! Get started
right away—you
need time to ask
questions.	

Prelim 2 handback	

Exams on front table,
in piles by lab
section.	

Final exam makeups	

Requests for makeups
(including cases of 3
exams in 24 hrs) are
due tonight in CMS.	

No lab next week	

There is no new lab
assignment for the
last week. Use the
time to ask questions
about A7 or to finish
lab 13.	

Academic integrity	

Please be careful: do
not share your code
or look at other
groups’ code.	

Model	

• 	

Defines and
	

manages the data	

• 	

Responds to the
	

controller requests	

View	

• 	

Displays model to
	

the user	

• 	

Provides interface
	

for the controller	

Controller	

• 	

Updates model in
	

response to events	

• 	

Updates view with
	

model changes	

	

Model-View-Controller Pattern	

Calls the
methods or	

functions of	

Division
can apply
to classes

or modules	

A Standard GUI Application	

Update the display	

No major computation	

Animates the	

application,	

like a movie	

Check for user input	

Process that user input	

Update the models	

A Standard GUI Application	

Update the display	

No major computation	

Check for user input	

Process that user input	

Update the models	

Controller	

View	

Event���
Loop	

while-loop	

Must We Write this Loop Each Time?	

while program_is_running:

 # Get information from mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 # Draw stuff on the screen

 # Handled by OS/GUI libraries

Must We Write this Loop Each Time?	

while program_is_running:

 # Get information from mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 # Draw stuff on the screen

 # Handled by OS/GUI libraries

Why do we need to
write this each time?	

Would like to
“plug in” code	

Lecture	
 26:	
 4/24/13	

CS1110	
 Spring	
 2013:	
 Event-­‐driven	

Programming	
 2	

print 'Hello '+n+'!'

Functions Are Objects	

•  Calling a function	

§  Provide arguments in ()

§  Executes the body	

•  Passing a function	

§  Assign another variable	

§  Use the name without ()

•  Example:	

>>> x = greet

>>> x('Walker')

Hello Walker!

 def greet(n):

 print 'Hello '+n+'!'

id42	

greet	

id42	

function	

Callback Functions	

•  Given: predefined code that
calls some function	

§  But function not defined	

§  You want to replace it with

your function	

•  You redefine that function	

§  By overriding it in a subclass
(do this in A7)	

§  Or by storing a reference to
your function somewhere
(“registering” your callback)	

§  Works the same either way	

while program_running:

 # Get input

 # Your code goes here

 callback()

 # Draw	

See callback.py

Example: Animation	

•  Callback: animate(…)

§  Called 60x a second	

§  Moves back and forth	

•  Animate is a method 	

§  Associated with an object	

§  Object has changing state	

•  Examples of state	

§  Ellipse position	

§  Current velocity	

§  Current animation step	

 def animate(self,dt):

 """Animate the ellipse back & forth"""

 if self._steps == 0:

 # Initialize

 …

 elif self._steps > ANIMATION_STEPS/2:

 # Move away

 x = self._ellipse.pos[0]

 y = self._ellipse.pos[1]

 self._ellipse.pos = (x+self._vx,y+self._vy)

 self._steps = self._steps - 1

 else: # Move back

 x = self._ellipse.pos[0]

 y = self._ellipse.pos[1]

 self._ellipse.pos = (x-self._vx,y-self._vy)

 self._steps = self._steps - 1

Example: Animation	

•  Callback: animate(…)

§  Called 60x a second	

§  Moves back and forth	

•  Animate is a method 	

§  Associated with an object	

§  Object has changing state	

•  Examples of state	

§  Ellipse position	

§  Current velocity	

§  Current animation step	

 def animate(self,dt):

 """Animate the ellipse back & forth"""

 if self._steps == 0:

 # Initialize

 …

 elif self._steps > ANIMATION_STEPS/2:

 # Move away

 x = self._ellipse.pos[0]

 y = self._ellipse.pos[1]

 self._ellipse.pos = (x+self._vx,y+self._vy)

 self._steps = self._steps - 1

 else: # Move back

 x = self._ellipse.pos[0]

 y = self._ellipse.pos[1]

 self._ellipse.pos = (x-self._vx,y-self._vy)

 self._steps = self._steps - 1

See animate.py

State Across Multiple Callbacks	

•  Sometimes have more than
one callback function	

•  Example: touch events	

§  on_touch_down:�

User presses mouse (or a���
finger); does not release	

§  on_touch_up:�
Releases mouse (or finger)	

§  on_touch_move:�
Moves mouse (or finger)	

•  State needed to track ���
change in touch over time	

 See touch.py

Previous
Touch	

Current
Touch	

State Across Multiple Callbacks	

 # None or previous touch

 _anchor = None

 def on_touch_down(self,touch):

 # Track touch state

 self._anchor = (touch.x,touch.y)

 def on_touch_up(self,touch):

 # Nothing to track

 self._anchor = None

 def on_touch_move(self,touch):

 if not self._anchor is None:

 self.drawLine(self._anchor[0], self._anchor[1],

 touch.x,touch.y,LINE_COLOR)

 self._anchor = (touch.x,touch.y)

See touch.py

Previous
Touch	

Current
Touch	

