
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 25: Subclasses and Inheritance	

CS 1110

Prelim 2 regrades	

1.  Read solution/grading guide

posted on Exams page	

2.  Attach written note, with

name, NetID, and
explanation, to exam (do not
write on exam)	

3.  Hand to us in class	

due Apr 30	

Program design	

•  Example: drawing program (e.g. PowerPoint)	

•  Many types of content can appear on slides	

•  Want do do things like���

 for x in slide[i].contents:�
 x.draw(window)

•  No problem: define class for every type of
content (text box, rectangle, image, …), make
sure each has a draw method	

Sharing work	

•  Defining separate classes for text box, image,
etc. is fine, but could get repetitive	

§  all have code for drawing selection handles, frames,

backgrounds, …	

•  Solution: make these shapes subclasses of a

single class, where the shared code lives	

Defining a subclass	

class SlideContent(object):
 """Any object on a slide."""
 def __init__(self, x, y, w, h): …
 def draw_frame(self): …
 def select(self): …

class TextBox(SlideContent):
 """An object containing text."""
 def __init__(self, x, y, text): …
 def draw(self): …

class Image(SlideContent):
 """An image."""
 def __init__(self, x, y, image_file): …
 def draw(self): …

SlideContent

TextBox Image

superclass, or
base class	

subclass, or
derived class	

__init__(x,y,w,h)	

draw_frame()	

select()	

SC	

__init__(x,y,text)	

draw()	

TextBox(SC)	

__init__(x,y,img_f)	

draw()	

Image(SC)	

(abbreviated SC���
on this slide)	

Names in subclasses and superclasses	

•  Recall rule for looking up attribute names in classes:
look first in the instance, then in the class.	

•  With inheritance, there’s one simple addition: look in
the instance, then in the class, then in the superclass.	

__init__(x,y,w,h)	

draw_frame()	

select()	

SC	

__init__(x,y,text)	

draw()	

TextBox(SC)	
TextBox	

text ‘Hi!’

id3	

p id3

p.text p.draw()
p.select()

Customizing a class	

•  Example: telephony program (e.g. Skype)	

•  Call and Hang Up buttons should be green and

red (to follow convention from cell phones)	

•  Already have a class for normal buttons	

•  Implement from scratch? No, what a waste…	

•  Instead create a subclass of the button class that

is just like a normal button, except it draws itself
with a different color.	

Defining a subclass	

from favorite_gui_library import Button

class GreenButton(Button):

"""A regular old button, only green."""
def __init__(self, text): …
def draw(self):
 set_color(GREEN)
 Button.draw(self)

call_btn = GreenButton("Call")

…

in some other code somewhere
call_btn.draw()

__init__(text)	

draw()	

…	

Button	

__init__(text)	

draw()	

GreenBtn(Btn)	

GreenBtn	

text ‘Call’

id4	

call_btn id4

hides, or
overrides,
Button.draw	

Inheritance	

•  Superclass also called “parent”	

•  If subclass does nothing special, it has all the

same attributes as the parent class—it inherits all
the methods and variables	

•  Subclass can add new methods and variables
(with different names)	

•  Subclass can override methods and class
variables (by giving them the same names)	

Review: names and instances	

class A(object):
x = 29
y = 42
def __init__(self):
 self.y = 2
 self.z = 3
def f(self):
 print 'this is A.f'
 print 'self.x:', self.x
 print 'self.y', self.y
 print 'self.z', self.z
 print 'A.y', A.y

a = A()
print 'a.y:', a.y
print 'A.y:', A.y
a.f()
A.f(a)

which appears? 	
(A) a.y: 42
	
(B) a.y: 29
	
(C) a.y: 2
	
(D) an error	

which appears? 	
(A) A.y: 42
	
(B) A.y: 29
	
(C) A.y: 2
	
(D) an error	

which appears? 	
(A) self.y: 42
	
(B) self.y: 29
	
(C) self.y: 2
	
(D) an error	

The two calls 	
(A) do the same thing
to A.f: 	
(B) first is an error

	
(C) second is an error
	
(D) there are not two calls	

 	

class A(object):
x = 3
y = 5
def f(self):
 self.g()
def g(self):
 print “this is A.g”

class B(A):

y = 4
z = 42
def g(self):
 print “this is B.g”

 def h(self):
 print “this is B.h”

a = A()
b = B()

a.f() prints: 	
(A) this is A.f
	
(B) this is B.g
	
(C) this is A.g
	
(D) an error	

b.f() prints: 	
(A) this is A.f
	
(B) this is B.g
	
(C) this is A.g
	
(D) an error	

Name resolution examples	

b.y is: 	
(A) 4
	
(B) 5
	
(C) 42
	
(D) an error	

b.x is: 	
(A) 3
	
(B) 4
	
(C) 5
	
(D) an error	

A.y is: 	
(A) 4
	
(B) 5
	
(C) 42
	
(D) an error	

B.x is: 	
(A) 3
	
(B) 4
	
(C) 5
	
(D) an error	

Initialization	

•  We haven’t said anything about instance
variables—are they inherited too?	

•  Remember instance variables are created during
initialization (or at other times but that is not a good idea)	

•  To create new instance variables in the subclass
we need a subclass initializer	

•  For the superclass to work correctly we still need
the superclass initializer	

•  How is this going to work?	

Subclass initialization example	

class SlideContent(object):

"""Any object on a slide."""
def __init__(self, x, y, w, h):
 """Obj. with given pos'n and size"""
 self.x = x; self.y = y
 self.w = w; self.h = h
…

class TextBox(SlideContent):

"""An object containing text."""
def __init__(self, x, y, text):
 w = width(text)
 h = height(text)
 SlideContent.__init__(self, x, y, w, h)
 self.text = text
…

class Image(SlideContent):

"""An image."""
def __init__(self, x, y, image_file): …
…

SlideContent initializer sets up
instance variables for the position
and size of the object on the slide	

TextBox initializer overrides the superclass
initializer. Only the TextBox initializer is
called to initialize a fresh TextBox instance.	

To ensure that the superclass still gets
initialized, the subclass initializer must
call the superclass initializer explicitly.	

In this example the size is computed in the initializer.	

 	

class A(object):

def __init__(self):
 self.x = 3
 self.y = 5
def f(self):
 print “A.f: self.x:”, self.x
 print “A.f: self.y:”, self.y

class B(A):

def __init__(self):
 A.__init__(self)
 self.y = 4
 self.z = 42
def f(self):
 A.f(self)
 print “B.f self.y:”, self.y
 print “B.f self.z:”, self.z

a = A()
b = B()

a.f() prints: 	
(A) 	
A.f self.y: 4 (C) A.f self.y: 5
(among others) (B) A.f self.y: 3 (D) 	
an error	

Instance variables in a subclass	

b.f() prints: 	
(A) 	
B.f self.y: 4 (C) B.f self.y: 5
(among others) (B) B.f self.y: 3 (D) 	
an error	

Subclass method overrides superclass method of the same name. 	

Subclass instance variable overwrites value set by superclass. 	

Summary: defining a subclass	

•  Methods and class variables in the superclass can be
overridden by definitions in the subclass	

§  you can still get at them by accessing them explicitly through

the superclass	

•  Instance variables set by the superclass initializer can

be overwritten by initializations in the subclass	

•  Always call the superclass initializer from the subclass

initializer, before initializing the subclass. Then these
two not only sound similar but also act similarly!	

