Program design

* Example: drawing program (e.g. PowerPoint)

e Many types of content can appear on slides

* Want do do things like
for x in slide[i].contents:
x.draw(window)

* No problem: define class for every type of

content (text box, rectangle, image, ...), make

sure each has a draw method

Customizing a class

* Example: telephony program (e.g. Skype)

e Call and Hang Up buttons should be green and

red (to follow convention from cell phones)

* Already have a class for normal buttons

* Implement from scratch? No, what a waste...

* Instead create a subclass of the button class that
is just like a normal button, except it draws itself

with a different color.

Names in subclasses and superclasses

* Recall rule for looking up attribute names in classes:

look first in the instance, then in the class.

* With inheritance, there’s one simple addition: look in
the instance, then in the class, then in the superclass.

id3

i TextBox
P _id3

text

!

p.text p.draw()

CS1110 Spring 2013: Subclasses and
Inheritance

p.select()

Lecture 25:4/22/13

Sharing work

* Defining separate classes for text box, image,
etc. is fine, but could get repetitive
= all have code for drawing selection handles, frames,

backgrounds, ...

* Solution: make these shapes subclasses of a
single class, where the shared code lives

Defining a subclass

(abbreviated SC

on this slide) superclass, or C
e G SlideContent

class SlideContent(object):
"""Any object on a slide.""
def __init_ (self, x, y, w, h): ...

def draw_frame(self): ...
def select(self): ...

TextBox ‘ ’ Image ‘

subclass, or
class TextBox(SlideContent): | derived class

"""An object containing text."
__init__(self, x, y, text): ...
def draw(self): ...

class Image(SlideContent):
AR image."™
__init__(self, x, y, image_file): ...
def draw(self): ...

Inheritance

 Superclass also called “parent”

« If subclass does nothing special, it has all the
same attributes as the parent class—it inherits all

the methods and variables

¢ Subclass can add new methods and variables

(with different names)

* Subclass can override methods and class
variables (by giving them the same names)

Name resolution examples

a.fQ prints: (A) this is A.f
class A(object): (B) this is B.g
x= g (O) thisis A.g
et sty (D) an error
self.g0 | b.fO prints: (A) this is A.f
def g(self): (B) this is B.g
print “this is A.g" (C) thisis A.g
class B(A): © T error
y=4 byis: (A)4 Ayis: (A)4
z=42 B)5 B)5
def g(gegizém sBe ©) 4R (©) 42
prin s is B.
def h(self: (D) an error (D) an error
print “this is B.h" “lbxis: (A3 [[Bxis: (A3
(B) 4 (B) 4
a=40 ©5 ©5
b=B0 (D) an error (D) an error

Subclass initialization example

class SlideContent(object): 3 P
ANy object 051 a:]slid>e o SlideContent initializer sets up
def int 1f . h): instance variables for the position
ef _int__(self, x, y, w,)lnd size™ and size of the object on the slide

""Obj. with given pos'n a.
selfx =x; selfy =y
selfw=w;selfh=h

Lecture 25: 4/22/13

Initialization

* We haven’t said anything about instance
variables —are they inherited too?

* Remember instance variables are created during
initialization (or at other times but that is not a good idea)

To create new instance variables in the subclass
we need a subclass initializer

For the superclass to work correctly we still need
the superclass initializer

How is this going to work?

Instance variables in a subclass

TextBox initializer overrides the superclass
initializer. Only the TextBox initializer is
called to initialize a fresh TextBox instance.

class TextBox(SlideContent):

"""An object containing text.""

__init_ (self, x, y, text): - . N o
w = width(text) ‘ég In this example the size is computed in the initializer.

self.text = text initialized, the subclass initializer must

h = height(text) - . I
SlideContent.__init_ (self, x, y, w, h) To ensure that the superclass still gets
call the superclass initializer explicitly.

class Image(SlideContent):
AR Tmage.™
__init_ (self, x, y, image_file): ...

Summary: defining a subclass

* Methods and class variables in the superclass can be
overridden by definitions in the subclass

= you can still get at them by accessing them explicitly through
the superclass

 Instance variables set by the superclass initializer can
be overwritten by initializations in the subclass

e Always call the superclass initializer from the subclass
initializer, before initializing the subclass. Then these
two not only sound similar but also act similarly!

CS1110 Spring 2013: Subclasses and
Inheritance

class A(object):
def __init__(self):
x=3
y=8
def f(self): afQ prints: (A) Afselfy:4 (C) Afselfy: 5

print “Af: selfx.”, SelfX | 1one others) (B) Afselfy: 3 (D) an error
print “A.f: self.y:”, self.y

class B(A):

def __init__(self):
A.__init__(self)
y=4 ‘<4 Subclass instance variable overwrites value set by superclass. ‘
z=42

def f(self): % Subclass method overrides superclass method of the same name. ‘
A f(self) =
print “B.f self.y:", selfy bfQ prints: (A) Bfselfy:4 (C) Bfselfy: 5
print “B.f self.z:”, self.z (among others) (B) B.f self.y: 3 (D) an error

a=40
b=B0O

