
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 24: Exceptions and Try-statements	

CS1110

Readings	

Today: 14.5, A.2.3	

Next time: 17, 18 (especially 18.7). Our graphical
notation will (once again) differ significantly from the
book.	

When things go wrong (in Python)	

Q1: What happens when an error causes a crash?	

 TypeError: unsupported operand type(s) for +: 'int' and 'list'

 IndexError: list index out of range

Understanding this helps you debug.	

	

Q2: Can we use "problem-signalling" to handle
unusual situations more smoothly?	

Understanding this helps you write more flexible code.	

	

	

	

	

	

 	

It is sometimes better to warn and re-prompt the user
than to have the program crash (even if the user didn't follow
your exquisitely clear directions or preconditions).

(Runtime) errors are exception objects	

ZeroDivisionError: integer division or modulo by zero

name of the type of the exception object	

string kept in the exception object	

When various bad things happen, Python creates an exception object.	

 	

 If that object is not otherwise "handled", the system halts, printing 	

the stack trace and info about the exception object.	

 Hierarchy of exceptions	

Exception	

StandardError	

SystemExit	

AssertionError	

 ArithmeticError	

AttributeError	

 ValueError	

TypeError	

IOError	

…	

ZeroDivisionError	

 OverflowError	

 …	

Argument has
wrong type	

(e.g. float([1]))	

Argument has
wrong value	

(e.g. float('a'))	

http://docs.python.org/library/exceptions.html

Recovering from errors: Try-except	

Try-except blocks allow us to recover from errors	

  Do the code that is in the try-block	

  If an error occurs, jump to the except-block (skip it o.w.)	

	

def recip(x):

"""Return 1.0/x, or inf if x is 0. Pre: x is a number"""

try:

return 1.0/x

except:

return float('Inf')

executes if an error occurs	

Recovering from specific error types	

You can have except-blocks that are executed only
if the exception is an instance of a particular
class.	

def recip(x):

"""Return 1.0/x, or inf if x is 0"""

try:

return 1.0/x

except ZeroDivisionError:

return float('Inf')

Exercise	

def recip4():

 """Return reciprocal of user input. If the user gives

 bad input, keep prompting them until they give valid input"""

first, let's learn about the raw_input function.

Template: Handling user-input problems	

def recip4():

 """Return reciprocal of user input (we don't handle 0)"""

 prompt = "Pick a non-zero number: "

 while True:

 try:

 n = float(raw_input(prompt))

 return 1.0/n

 except ZeroDivisionError:

 print 'The number has to be non-zero; please try again.'

 except ValueError:

 print 'The input has to be a number; please try again.'

The only escape is
if valid input is
given in the try
block, so the that
return statement
succeeds.	

Creating exceptions: raise 	

def speed(x):

 if x > 3e8:

 raise ValueError('speed: input > light speed')

	

You can signal errors by creating exceptions with raise.

You can choose an informative output message	

The type is informative to the user	

(or enclosing except-blocks)	

As usual, creates a new object.	

Creating Your Own Class of Exceptions	

class SpeedError(StandardError):

 """An instance signals violation of a speed constraint."""

 pass

What's in parentheses is what you declare the parent class	

of the new class to be.	

Thus, all SpeedErrors are also StandardErrors, 	

and inherit their characteristics:	

 	

	

...

except StandardError:

 print 'Something is wrong, but proceeding anyway'

 # a SpeedError will trigger this except clause

Why create your own exceptions?	

class SpeedError(StandardError):

 """An instance signals violation of a speed constraint."""

 pass

Exceptions provide a mechanism for your functions to	

communicate with each other:	

 Callees can "hand" downstream callers an exception	

to signal that something unusual happened. 	

	

Try-except vs. if-statements or asserts	

Rules of thumb:	

For simple tests and "normal" situations, if-thens are

usually better. 	

For precondition violations, asserts are more

readable. (Note: asserts raise AssertionErrors.)	

For more "abnormal" situations, try-excepts are

better. 	

	

There are some canonical try-except idioms, such as

processing malformed user input (which we just
saw).	

	

