CS1110

Lecture 21: More sequence algorithms

wo morals from A4:
* Sometimes even seemingly random human behavior can be

predicted precisely (e.g., fraction-converted fixed point).

* A good enough idea (small 7) promoted by even a small but
vocal group (large d) can change the whole world.

Typo in A6 _drawHBar spec: see Piazza @309.

No office hours next Wed-Fri1 (can't start grading until Thu Apr 18)

Next Tue lab = office hours. No next Wed lab at all.

@cessed regrade requests on the front table by end of class. /

Slides by D. Gries, L. Lee, S. Marschner, W. White

Invariants: Keep in mind

e At heart, an invariant 1s just a way to document

what you want your variables to mean.
This 1s why you want your code to keep the invariant true;
you want to keep things consistent in your program, and in
your head.

e In our notation, both
b[i+1l..i] and
b[i..1-1]

denote an empty sequence.

4/9/13

Linear search in unsorted lists

Goal: Given unsorted list b, search range h..k-1 for k >=h and h and
k valid indices for b, and target value v, refurn index n of v's first

occurrence in bl[h..k-1] (-1 if not found)

Restated as postcondition: if n=-1, then v is not in b[h. k-1].
Otherwise, v = b[n] and v 1s not in b[h..n-1].

Idea: keep an index 1, marking position of next thing unchecked;
everything to its left has been verified to not be v.
h i k

inv: b| v nothere ?

If | .< k and b[i] = v, return i as n; if i==k, v isn't in b.

Linear Search

h 1 k
inv: b| vnothere ?

def linear_search(b,hk,v): Analyzing the Loop

nin See Pevious nin
(Y) 1. Does the initialization

i=h make inv true?
inv says: b[h..i-1] not v; start: b[h..h-1] not v; 2. Is post true when inv is
end: b[i]isvoriis k. true and condition is false?
while i <k and b[i] != v 3. Does the repetend make
i=i+1 progress?
n=jifi<kelse-l 4. Does the repetend keep
inv true?

return n

4/9/13

Binary search in sorted lists

Goal: Given sorted list b, search range h..k for k >=h and h and k
valid indices for b, and target value v, return index n of v's first
occurrence in b[h..k] (-1 if not found)

Restated as postcondition: if n=-1, then v is not in b[h..k].
Otherwise, v = b[n] and v 1s not in b[h..n-1].

Idea: keep indices 1 and j, marking position of next thing not known
to be < v, and the first thing known to be >=v. Check halfway btwn

em. h i i k
inv: b <V ? >=V

If 1 <=k and b[1] = v, return 1 as n; 1f 1> k or 1 ==j and b[1] not v-er
HII3 i=k-+1, visn't in b.

(most of) Binary search implementation

h 1] k
inv: b| <v ? >=V
def bin_search(b,h,k,v): # omitting the last return for space

(see previous)
Ql: (A)i=h;j=k @@B)i=h-1;j=k+1 (C)i=h1l;j=k D)i=h;j=k+l
inv: b[h..i-1] <, blj..k] >=v, i <=j; start: b[h..h-1] <v, b[k+1.k] >=v
while QR: (A) i==] B)i<j (©)i<s
if b[i] == v:

return i
mid = (i+j)/8
if b[mid] < v:

Q3: (A)i=mid (B) i = mid+1
else:

4/9/13
j=mid # may skip vast section of b

(most of) Binary search implementation

h 1] k
inv: b| <v ? >=V
def bin_search(b,h,k,v): # omitting the last return for space

(see previous)
i=h; j=k+1
inv: b[h..i-1] <wv, b[j..k] >=v, i <=j; start: b[h..h-1] <v, b[k+1.k] >=v
while i <j:
if b[i] == v:
return i
mid = (i+j)/8
if b[mid] < v:
i=mid+1 # may skip vast section of b
else

4/9/13
j=mid # may skip vast section of b

Sorting: Selection Sort

pre: b

mv: b

0 n 0 n
? post: b sorted
Selection Sort:
0 1 n
sorted, < b[1..] >Db[0.1-1]or?21f1=0
i
INITIALIZE AND COMPLETE 24466899789

while ...:
j is min item in b[i..n-1]
j =1+ b[i:n].index(min(b[i:n]))

4/9/13

Note the swap of the reds

1

24466

799889

|

24466

7199889

Sorting: Selection Sort

Selection Sort:
0 1 n
inv: b sorted, < b[i..] >b[0.1-1]Jor ?1f1i=0

i=0
while i < n:
j==1+Db[i:n].index(min(b[i:n]))

bli], b[j] = blj], bli]
i=i+1

4/9/13

Famous "Sort-Like" Example

* Dutch national flag: tri-color

= Sequence of h. .k of red (<0), white (=0), blue (>0) "pixels"
= Arrange to put <O first, then =0 , then >0, return "split pts"

pre: b

post: b

inv: b

h k
?
h k
<0 =0 >0
h 1 k
<0 =0 >0

(values in h..k are unknown)

b[h..t-1] <0, b[t..i- 1] unknown, b[i.j] =0, b[j+1.k] >0

4/9/13

Dutch National Flag Algorithm

def dnf(b, h, kK):

"""(DNF explanation omitted for space.)
Returns: split-points as a tuple (i,j)"""
init?
inv: b[h..t-1] < O, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] >0
while t < 1i:

if b[i-1] < O:

what?

elif b[i-1] == 0:
what?
else:
what?

post: b[h..i-1] < 0, b[i.j] = 0, blj+1..k] > 0
refgirn (i,)

Dutch National Flag Algorithm

def dnf(b, h, k):

"""Returns: partition points as a tuple (,j)""
t=h;i=k+1,j=k;

inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j] = O, b[j+1..k] >0
while t <

if b[i-1]1 < 0:

b[i-1], b[t] = b[t], b[i-1]

t=t+1

elif b[i-1] == 0:

i=1il

else:

b[-1], b[jl = b{j], bli-1

i=il;j=jl

post: b[h..i-1] <0, b[i..j] = 0, b[j+1.k] >0
return (i, j)

4/9/13

<0 ? =0 | >0

h t 1] k

-1 -213-1 0]0 0|6 3

h t 1]

-1 213 -1{0 0 0(6 3

h t 1]

-1 -2 -1(3|]0 0 06 3
KA

h t] k

-1 -2 -110 0 0|3 6 3
7

