CS1110

Lecture 21: More sequence algorithms

Announcements

Two morals from A4:

- Sometimes even seemingly random human behavior can be predicted precisely (e.g., fraction-converted fixed point).
- A good enough idea (small t) promoted by even a small but vocal group (large d) can change the whole world.

Typo in A6 _drawHBar spec: see Piazza @309.

No office hours next Wed-Fri (can't start grading until Thu Apr 18)
Next Tue lab $=$ office hours. No next Wed lab at all.
Processed regrade requests on the front table by end of class.

Invariants: Keep in mind

- At heart, an invariant is just a way to document what you want your variables to mean.
This is why you want your code to keep the invariant true; you want to keep things consistent in your program, and in your head.
- In our notation, both $\mathrm{b}[\mathrm{i}+1 . . \mathrm{i}]$ and $\mathrm{b}[\mathrm{i} . . \mathrm{i}-1]$
denote an empty sequence.

Linear search in unsorted lists

Goal: Given unsorted list b, search range h..k-1 for $\mathrm{k}>=\mathrm{h}$ and h and k valid indices for b , and target value v , return index n of v's first occurrence in $\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$ (-1 if not found)
Restated as postcondition: if $\mathrm{n}=-1$, then v is not in $\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$. Otherwise, $\mathrm{v}=\mathrm{b}[\mathrm{n}]$ and v is not in $\mathrm{b}[\mathrm{h} . \mathrm{n}-1]$.

Idea: keep an index i, marking position of next thing unchecked; everything to its left has been verified to not be v.

If, $i=k$ and $b[i]=v$, return i as n; if $i==k, v$ isn't in b.

Linear Search

Binary search in sorted lists

Goal: Given sorted list b , search range $\mathrm{h} . \mathrm{k}$ for $\mathrm{k}>=\mathrm{h}$ and h and k valid indices for b , and target value v , return index n of v 's first occurrence in b[h..k] (-1 if not found)
Restated as postcondition: if $\mathrm{n}=-1$, then v is not in $\mathrm{b}[\mathrm{h} . \mathrm{k}]$. Otherwise, $\mathrm{v}=\mathrm{b}[\mathrm{n}]$ and v is not in $\mathrm{b}[\mathrm{h} . \mathrm{n}-1]$.

Idea: keep indices i and j, marking position of next thing not known to be $<v$, and the first thing known to be $>=v$. Check halfway btwn 'em.

If $\mathrm{i}<=\mathrm{k}$ and $\mathrm{b}[\mathrm{i}]=\mathrm{v}$, return i as n ; if $\mathrm{i}>\mathrm{k}$ or $\mathrm{i}==\mathrm{j}$ and $\mathrm{b}[\mathrm{i}]$ not $\mathrm{v}-\otimes$ r

(most of) Binary search implementation

def bin_search(b,h,k,v): \# omitting the last return for space
"""(see previous)"""
Q1: (A) $\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}$
(B) $\mathrm{i}=\mathrm{h}-\mathrm{l} ; \mathrm{j}=\mathrm{k}+\mathrm{l}$
(C) $i=h-1 ; j=k$
(D) $\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l}$
\# inv: b[h.i-l] < v, b[j..k] >=v, i <= j; start: b[h..h-l] < v, b[k+l..k] >= v
while QR:
(A) $i==j$
(B) $i<j$
(C) $i<=j$
if $b[i]==v$:
return i
mid $=(i+j) / 2$
if b [mid] < v :
Q3:
(A) $i=$ mid
(B) $i=m i d+1$

4/9/13

$$
j=\operatorname{mid} \quad \# \text { may skip vast section of } b
$$

(most of) Binary search implementation

def bin_search(b,h,k,v): \# omitting the last return for space
"""(see previous)"""
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l}$
\# inv: b[h.i-l 1$]<\mathrm{v}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{v}, \mathrm{i}<=\mathrm{j} ;$ start: $\mathrm{b}[\mathrm{h} . \mathrm{h}-\mathrm{l}]<\mathrm{v}, \mathrm{b}[\mathrm{k}+\mathrm{l} . . \mathrm{k}]>=\mathrm{v}$
while i < j :
if $\mathrm{b}[\mathrm{i}]==\mathrm{v}$:
return i
$\operatorname{mid}=(i+j) / 2$
if b [mid] < v :
$\mathrm{i}=$ mid+l \# may skip vast section of b
else:
4/9/13

$$
j=\text { mid } \quad \# \text { may skip vast section of } b
$$

Sorting: Selection Sort

pre: $b \square^{0} \square^{n} \quad$ post: $b \square^{0}$ sorted

Selection Sort:

inv:

0	${ }^{\text {n }}$
sorted, $\leq b[i .]$.	$\geq b[0 . . i-1]$ or $?$ if $i=0$

INITIALIZE AND COMPLETE

	i									
2	4	4	6	6	8	9	9	7	8	9

while ...:
\# j is min item in $\mathrm{b}[\mathrm{i} . \mathrm{n} \mathrm{n}-1]$
$j=i+b[i: n] . \operatorname{index}(\min (b[i: n]))$

4/9/13
Note the swap of the reds

	i									
2	4	4	6	6	7	9	9	8	8	9

Sorting: Selection Sort

Selection Sort:

$\mathrm{i}=0$
while i < n :

$$
\begin{aligned}
& \mathrm{j}==\mathrm{i}+\mathrm{b}[\mathrm{i}: n] \cdot \operatorname{index}(\min (b[i: n])) \\
& b[i], b[j]=b[j], b[i] \\
& i=i+1
\end{aligned}
$$

Famous "Sort-Like" Example

- Dutch national flag: tri-color
- Sequence of h..k of red (<0), white $(=0)$, blue (>0) "pixels"
- Arrange to put <0 first, then $=0$, then >0, return "split pts"
pre: b

(values in h..k are unknown)
post: b
h

	k	
<0	$=0$	>0

inv: b

h	t	i	j	k
<0	$?$	$=0$	>0	

$$
\mathrm{b}[\mathrm{~h} . . \mathrm{t}-1]<0, \mathrm{~b}[\mathrm{t} . \mathrm{i}-1] \text { unknown, } \mathrm{b}[\mathrm{i} . . \mathrm{j}]=0, \mathrm{~b}[\mathrm{j}+1 . . \mathrm{k}]>0
$$

Dutch National Flag Algorithm

```
def dnf(b, h, k):
    """(DNF explanation omitted for space.)
    Returns: split-points as a tuple (i,j)"""
    # init?
    # inv: b[h..t-l] < 0, b[t..i-l] ?, b[i..j] = 0, b[j+l..k] > 0
    while t < i:
        if b[i-1]<0:
        # what?
        elif b[i-1] == 0:
        # what?
    else:
        # what?
    # post: b[h.i-l] < 0, b[i..j] = 0, b[j+l..k] > 0
    rataym(i, j)
```


Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k}$;
\# inv: b[h.t-l] < $0, b[t . . i-1]$?, b[i..j] $=0, b[j+1 . . \mathrm{k}]>0$ while t < i :
if $b[i-1]<0$:
$b[i-1], b[t]=b[t], b[i-1]$

$$
t=t+1
$$

elif $\mathrm{b}[\mathrm{i}-1]==0$:
$\mathrm{i}=\mathrm{i}-\mathrm{l}$
else:

$b[-1], b[j]=b[j], b[i-1$
$\mathrm{i}=\mathrm{i}-1 ; \mathrm{j}=\mathrm{j}-\mathrm{l}$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]$ < $0, \mathrm{~b}[\mathrm{i} . \mathrm{j}]=0, \mathrm{~b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]>0$
return (i, j)

4/9/13

