
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 21: More sequence algorithms	

CS1110

Two morals from A4:	

•  Sometimes even seemingly random human behavior can be

predicted precisely (e.g., fraction-converted fixed point).	

•  A good enough idea (small t) promoted by even a small but

vocal group (large d) can change the whole world. 	

	

Typo in A6 _drawHBar spec: see Piazza @309.	

	

No office hours next Wed-Fri (can't start grading until Thu Apr 18)	

	

Next Tue lab = office hours. No next Wed lab at all.	

Processed regrade requests on the front table by end of class.	

	

Invariants: Keep in mind	

•  At heart, an invariant is just a way to document

what you want your variables to mean.	

 This is why you want your code to keep the invariant true;
you want to keep things consistent in your program, and in
your head.	

	

•  In our notation, both 	

 b[i+1..i] and	

 b[i..i-1] 	

denote an empty sequence.	

	

4/9/13	

Linear search in unsorted lists	

Goal: Given unsorted list b, search range h..k-1 for k >=h and h and
k valid indices for b, and target value v, return index n of v's first
occurrence in b[h..k-1] (-1 if not found) 	

Restated as postcondition: if n=-1, then v is not in b[h..k-1].
Otherwise, v = b[n] and v is not in b[h..n-1].	

	

	

	

	

Idea: keep an index i, marking position of next thing unchecked;	

everything to its left has been verified to not be v.	

	

	

	

If i < k and b[i] = v, return i as n; if i==k, v isn't in b.	

	

	

	

 v not here ? 	

h i k 	

 inv: b	

4/9/13	

Linear Search	

def linear_search(b,h,k,v):

 """(see previous)"""

i = h

 # inv says: b[h..i-1] not v; start: b[h..h-1] not v;

 # end: b[i] is v or i is k.

 while i < k and b[i] != v:

 i = i + 1

n = i if i < k else -1

 return n

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

 v not here ? 	

h i k 	

 inv: b	

4/9/13	

Binary search in sorted lists	

Goal: Given sorted list b, search range h..k for k >=h and h and k
valid indices for b, and target value v, return index n of v's first
occurrence in b[h..k] (-1 if not found) 	

Restated as postcondition: if n=-1, then v is not in b[h..k].
Otherwise, v = b[n] and v is not in b[h..n-1].	

	

	

	

	

Idea: keep indices i and j, marking position of next thing not known
to be < v, and the first thing known to be >=v. Check halfway btwn
'em.	

	

	

If i <= k and b[i] = v, return i as n; if i> k or i ==j and b[i] not v or

i=k+1, v isn't in b.	

	

	

	

 <v ? >=v 	

h i j k 	

 inv: b	

4/9/13	

(most of) Binary search implementation	

 <v ? >=v 	

h i j k 	

 inv: b	

def bin_search(b,h,k,v): # omitting the last return for space

 """(see previous)"""

Q1: (A) i = h; j=k (B) i=h-1; j = k+1 (C) i = h-1; j = k (D) i = h; j = k+1

 # inv: b[h..i-1] < v, b[j..k] >=v, i <= j; start: b[h..h-1] < v, b[k+1..k] >= v

 while Q2: (A) i==j (B) i < j (C) i <=j

 if b[i] == v:

 return i

 mid = (i+j)/2

 if b[mid] < v:

Q3: (A) i = mid (B) i = mid+1

 else:

 j = mid # may skip vast section of b

4/9/13	

(most of) Binary search implementation	

 <v ? >=v 	

h i j k 	

 inv: b	

def bin_search(b,h,k,v): # omitting the last return for space

 """(see previous)"""

i=h; j=k+1

 # inv: b[h..i-1] < v, b[j..k] >=v, i <= j; start: b[h..h-1] < v, b[k+1..k] >= v

 while i < j:

 if b[i] == v:

 return i

 mid = (i+j)/2

 if b[mid] < v:

i = mid+1 # may skip vast section of b

 else:

 j = mid # may skip vast section of b

4/9/13	

Sorting: Selection Sort	

? 	

0 n 	

pre: b	

 sorted	

0 n	

post: b	

sorted	

0 i n	

inv: b	

 ?	

Insertion Sort:	

INITIALIZE AND COMPLETE

while ...:

 # j is min item in b[i..n-1]

 j = i + b[i:n].index(min(b[i:n]))

sorted, ≤ b[i..]	

0 i n	

inv: b	

 ≥ b[0..i-1] or ? if i = 0	

Selection Sort:	

2 4 4 6 6 8 9 9 7 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

 i n	

Note the swap of the reds	

4/9/13	

Sorting: Selection Sort	

Insertion Sort:	

i=0

while i < n:

 j = = i + b[i:n].index(min(b[i:n]))

 b[i], b[j] = b[j], b[i]

 i = i + 1

sorted, ≤ b[i..]	

0 i n	

inv: b	

 ≥ b[0..i-1] or ? if i = 0	

Selection Sort:	

4/9/13	

Famous "Sort-Like" Example 	

•  Dutch national flag: tri-color 	

  Sequence of h..k of red (<0), white (=0), blue (>0) "pixels"	

  Arrange to put <0 first, then =0 , then >0, return "split pts" 	

? 	

h k	

pre: b	

 <0 =0 >0 	

h k	

post: b	

(values in h..k are unknown)	

inv: b <0 ? =0 >0	

h t i j k	

b[h..t-1] <0, b[t..i-1] unknown, b[i..j] =0, b[j+1..k] >0	

	

	

4/9/13	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """(DNF explanation omitted for space.)

 Returns: split-points as a tuple (i,j)"""

 # init?

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 # what?

 elif b[i-1] == 0:

 # what?

 else:

 # what?

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)
4/9/13	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 b[i-1], b[t] = b[t], b[i-1]

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 b[-1], b[j] = b[j], b[i-1

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

-1 -2 -1 0 0 0 3 6 3	

h t j k	

4/9/13	

