CS1110 Lecture 21 (sequence algs): 4/9/13

CS1110

Lecture 21: More sequence algorithms

(n

0 morals from A4:

* Sometimes even seemingly random human behavior can be
modeled and predicted precisely (fraction-converted fixed
point).

e A good enough idea (small 7) promoted by even a small but
vocal group (large d) can change the whole world.

Typo in A6 _drawHBar spec: see Piazza @309.

No office hours next Wed-Fri (can't start grading until Thu Apr

N

Slides by D. Gries, L. Lee, S. Marschner, W. White

Linear search in unsorted lists

Goal: Given unsorted list b, search range h..k-1 for k >=h, and
target value v, return index n of v's first occurrence in b[h..k-1] (-1
if not found)

Restated as postcondition: if n=-1, then v is not in b[h..k-1].
Otherwise, v = b[n] and v is not in b[h..n-1].

Idea: keep an index i, marking position of next thing unchecked;
everything to its left has been verified to not be v.
h i k
inv: b ‘ v not here ? ‘

If b[i] = v, we can stop and return i as n; if i==k, v isn't in b.

Binary search in sorted lists

Goal: Given sorted list b, search range h. k for k >=h, and target
value v, return index n of v's first occurrence in b[h..k-1] (-1 if not
found)

Restated as postcondition: if n=-1, then v is not in b[h..k-1].
Otherwise, v = b[n] and v is not in b[h..n-1].

Idea: keep indices i and j, marking position of next thing not known
to be < v, and the first thing known to be >=v. Check halfway btwn

fem. h I
inv: b| <v ‘? ‘ >=v

If b[i] = v, return i as n; if i> k or i ==j and b[i] not v or i=k+1, v isn't
inb.

Invariants: Keep in mind

* At heart, an invariant is just a way to document
what you want your variables to mean.
This is why you want your code to keep the invariant true;
you want to keep things consistent in your program, and in
your head.

¢ In our notation, both
b[i+1..i] and
b[i..i-1]

denote an empty sequence.

Linear Search

h i k
inv: b ‘ v not here

def linear_search(b,hk,v):
(see previous) 1. Does the initialization
i=h make inv true?
inv says: b[h..i-1] not v; start: b(h..h-1] not v; 2. Ts post true when inv is
#end: bfi]isvoriisk. true and condition is false?

while i <k and b[i] I= v: 3. Does the repetend make
‘ i=i+1 progress?

Analyzing the Loop

4. Does the repetend keep
inv true?

n=iifi<jelse-1
return n

(most of) Binary search implementation

i i
inv: b‘ <v l? ‘>:v ‘
def bin_search(b,h,k,v): # omitting the last return for space
""(see previous)""

QLl:(A)i=h;j=k (B)i=h-1;j=k+1 (C)i=h-1l;j=k (D)i=h;j=k+l
inv: b[h..i-1] < v, b[j..k] >=v, i <=j; start: b[h..h-1] <v, blk+1.k] >=v
while Q2: (A) i==j ®i<j ©i<s

if bli] ==v:
return i
mid = (i+))/2
if blmid] < v:
Q3 (A)i=mid (B)i=mid+l
else:
j=mid # may skip vast section of b

CS1110 Lecture 21 (sequence algs): 4/9/13

Sorting: Selection Sort (blank for room to write)

0 n 0 n

Selection Sort:

i n
inv: b[sorted,<bli.] |>b[0.i-1or?ifi=0]
i n
INITIALIZE AND COMPLETE [24466[89097809]
while ...:

Note the swap of the reds
Jj =b[0:n].index(min(b[i:n]))

i n
[24466[799383809]

i n
[244667][998809]

Famous "Sort-Like" Example Dutch National Flag Algorithm

. o def dnf(b, h, k):
* Dutch national flag: tri-color ""(DNF explanation omitted for space.)
= Sequence of h. .k of red (<0), white (=0), blue (>0) "pixels" Returns: split-points as a tuple (ij)""
= Arrange to put <O first, then =0 , then >0, return "split pts" # inlt?
b N # inv: b{h..t-1] < 0, b[t..i-1] 2, bi..j] = 0, b[j+1..k] > 0
while t < i:
pre: b ‘ ? ‘ (values in h..k are unknown) if bi-1] < 0:
h " # what?
post:b[<0 [=0 [>0 |
elif bli1] == 0
b . ; i K # what?
v b[<0 | 2 [=0][>0] o
what?

‘ b[h..t-1] <0, b[t..i-1] unknown, b[i..j] =0, b[j+1.k] >0 #post: b[hL1] < 0, bli.jl = 0, bj+ k] > 0
return (i, j)

