
Announcements	


Slides by D. Gries, L. Lee, S. Marschner, W. White	
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Upcoming schedule	


Today (April 4) A6 out: A4 due tomorrow.  Fix to memotable     
printing posted; see Piazza @303.	

Tu Apr 9: lecture on searching &sorting – last material on the 
exam	

   Probably a new lab exercise, for prelim exercise	

Th Apr 11: lecture = review session	

Sat Apr 13: A6 due (yes, we cancelled A5!).	

Tu Apr 16: lecture = office hours, in Thurston 102 	

    Exam that evening, same location as before	

   Probably no new lab exercise that week	

	

	




Sorting: A Key Algorithmic Family 	

Q: Given a list of items, how can we arrange for them 

to be sorted in increasing order, in a time- and 
space-efficient manner?	


    Applications: making items easier to find.1 	

      	

def sort(b, h, k):
    ""Sort  b[h..k] in place.  Pre: b: list of ints; k>=h-1"""
    # Start with b[h], and organize the rest according to it??
    # Note: we have h & k explicit to simplify recursive        
    # structure.
	

	


 1Also, computing poker-hand scores.	

	




Motivation: A Famous Sorting Function	


def qsort(b, h, k):
    """Make b[h..k] sorted. 
    Pre: b: list of ints; k>=h-1"""



   i = partition(b, h, k)
    

qsort(b,0,i-1)
    qsort(b,i+1,k) 	


def partition(b, h, k):
    """Let x = b[h] be the pivot 
value.  Rearrange b[h..k] so 
that there is an i where  
b[h..i-1] <= x, b[i]=x; b[i+1..k] 
>=x.  Return i.
Pre: k>=h"""
# Can you do this without
# creating extra lists?

Clicker Q2: base case	


Clicker Q1: recursive case	




Pictorial Notation for Sequence Assertions	


   	
b        	

0                                      h                                        k	


   	


h  h+1	


Equivalent to: 	

Property p holds on all items in b[0..h-1], and 
property q holds on all items in b[h..k].	

(The precise location of the "vertical bars" matters.)	

	

   Can also indicate single items.	

   ((h +1) – h = 1; it's all consistent, hurrah.)	

                                 	

	


some property p	
 some property q	




Partition Algorithm	


•  Given a sequence b[h..k] with some value x in b[h]:	


•  Swap elements of b[h..k] and store in i to truthify postcondition:	


	

or...	


 3  5  4  1  6  2  3  8  1 	
b	

h                              k	


change:	


into	
  1  2  1  3  5  4  6  3  8	
b	

h           i                  k	


 1  2  3  1  3  4  5  6  8	
b	

h               i              k	


or	


•  x is called the pivot value	

  x is not a program variable, but 

a standin for a number: value 
initially in b[h] 	


  x                                      ?	

     h                                                                                   k	


pre:    b	


        <= x                     x                >= x 	

   h                                   i    i+1                                        k	


post:  b	




Motivation: A Famous Sorting Function	


def qsort(b, h, k):
    """Make b[h..k] sorted. 
    Pre: b: list of ints; k>=h-1"""

    if k < h:  # empty is sorted
       return 
   i = partition(b, h, k)
    

    qsort(b,h,i-1)
    qsort(b,i+1,k) 	


def partition(b, h, k):
    """Let x = b[h] be the pivot 
value.  Rearrange b[h..k] so 
that there is an i where  
b[h..i-1] <= x, b[i]=x; b[i+1..k] 
>=x.  Return i.
Pre: k>=h"""
# Can you do this in place,  
# i.e., w/out
# creating extra lists?

Clicker Q2: base case	


Clicker Q1: recursive case	




An Invariant to Guide Our Thinking	


•  Given a sequence b[h..k] with some value x in b[h]:	


•  Swap elements of b[h..k] and store in i to truthify post:	


	


  x                                      ?	

   h                                                                                     k	


pre:    b	


        <= x                     x                >= x 	

   h                                   i    i+1                                        k	


post:  b	


             <= x                x       ?                  >= x 	

   h                                    i                j                               k	


inv:   b	


•  Agrees with precondition when i = h, j = k+1	

•  Agrees with postcondition when j = i+1  	




Partition Algorithm Implementation	

def partition(b, h, k):
    """Partition list b[h..k] around a pivot x = b[h];
    Return index of pivot point. Assume a swap function _swap(b,ind1, ind2).
   Pre: k>=h"""
   CLICKER Q5
    # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x, b[i+1..j-1] unknown
    while CLICKER Q4 
           if b[i+1] >= x:
            # Move to end of block.
            b[i+1], b[j-1] = b[j-1], b[i+1]
            j = j - 1
        else:   # b[i+1] < x
           CLICKER Q3
    # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
    return i
	




Partition Algorithm Implementation	

def partition(b, h, k):
    """Partition list b[h..k] around a pivot x = b[h]"""
    i = h; j = k+1; x = b[h]
    # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
    while i < j-1:
        if b[i+1] >= x:
            # Move to end of block.
            b[i+1], b[j-1] = b[j-1], b[i+1]
            j = j - 1
        else:   # b[i+1] < x
            b[i], b[i+1] = b[i+1], b[i]
            i = i + 1
    # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
    return i
	


1   2   3   1   5   0   6   3   8	

h        i    i+1          j         k	

 <= x   x        ?          >= x	


1   2   1   3   5   0   6   3   8	

h             i    i+1     j         k	


1   2   1   3   0   5   6   3   8	

h             i         j              k	


1   2   1   0   3   5   6   3   8	

h                   i   j              k	




Developing Algorithms on Sequences	


•  Specify the algorithm by giving its precondition ���
and postcondition as pictures.	


•  Draw the invariant by drawing another picture that 
“generalizes” the precondition and postcondition 	

  The invariant is true at the beginning and at the end	


•  The four loop design questions (memorize them)	

1.  How does loop start (how to make the invariant true)?	

2.  How does it stop (is the postcondition true)?	

3.  How does repetend make progress toward termination?	

4.  How does repetend keep the invariant true?	




Famous "Sort-Like" Example  	


•  Dutch national flag: tri-color 	

  Sequence of h..k of red (<0), white (=0), blue (>0) "pixels"	

  Arrange to put  <0 first, then =0 , then >0, return "split pts" 	


? 	

h                                                       k	


pre:   b	


   <0                =0              >0  	

h                                                       k	


post:  b	


(values in h..k are unknown)	


inv:   b    <0         ?          =0            >0	

h         t             i             j                k	


b[h..t-1] <0, b[t..i-1] unknown, b[i..j] =0, b[j+1..k] >0	

	

	




Dutch National Flag Algorithm	

def dnf(b, h, k):
    """(DNF explanation omitted for space.)
    Returns: split-points as a tuple (i,j)"""
   # init?
    # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0 
    while t < i:
        if b[i-1] < 0:
           # what?

        elif b[i-1] == 0:
           # what? 
        else: 
           # what?

    # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0 
    return (i, j)

-1   -2   3  -1   0    0   0   6   3	

h           t               i      j        k	


-1   -2   3   -1   0   0   0   6   3	

h           t           i          j        k	


   < 0           ?          = 0      > 0	


-1   -2   -1   3   0   0   0   6   3	


h                 t     i          j        k	


-1   -2   -1   0   0   0   3   6   3	

h                 i           j             k	

h                 t           j             k	




Dutch National Flag Algorithm	

def dnf(b, h, k):
    """Returns: partition points as a tuple (i,j)"""
    t = h; i = k+1, j = k; 
    # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0 
    while t < i:
        if b[i-1] < 0:
            b[i-1], b[t] = b[t], b[i-1]
            t = t+1
        elif b[i-1] == 0:
            i = i-1 
        else: 
           b[-1], b[j] = b[j], b[i-1
            i = i-1; j = j-1
    # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0 
    return (i, j)

-1   -2   3  -1   0    0   0   6   3	

h           t               i      j        k	


-1   -2   3   -1   0   0   0   6   3	

h           t           i          j        k	


   < 0           ?          = 0      > 0	


-1   -2   -1   3   0   0   0   6   3	

h                 t     i          j        k	


-1   -2   -1   0   0   0   3   6   3	

h                 t           j             k	



