CS1110

Lecture 20: Sequence algorithms

Announcements

Upcoming schedule

Today (April 4) A6 out: A4 due tomorrow. Fix to memotable printing posted; see Piazza @303.
Tu Apr 9: lecture on searching \&sorting - last material on the
exam
Probably a new lab exercise, for prelim exercise
Th Apr 11: lecture = review session
Sat Apr 13: A6 due (yes, we cancelled A5!).
Tu Apr 16: lecture = office hours, in Thurston 102
Exam that evening, same location as before
Probably no new lab exercise that week

Sorting: A Key Algorithmic Family

Q: Given a list of items, how can we arrange for them to be sorted in increasing order, in a time- and space-efficient manner?
Applications: making items easier to find. ${ }^{1}$
def sort(b, h, k):
""Sort b[h..k] in place. Pre: b: list of ints; k>=h-1""" \# Start with b[h], and organize the rest according to it?? \# Note: we have h \& k explicit to simplify recursive \# structure.
${ }^{1}$ Also, computing poker-hand scores.

Motivation: A Famous Sorting Function

def qsort(b, h, k):
"""Make b[h..k] sorted.
Pre: b: list of ints; k>=h-1"""
Clicker Q2: base case
$\mathrm{i}=$ partition(b, h, k)
Clicker Q1: recursive case
def partition(b, h, k):
"""Let $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ be the pivot
value. Rearrange b[h..k] so that there is an i where
b[h..i-l] <= x, b[i]=x; b[i+l..k]
$>=x$. Return i.
Pre: k>=h"""
\# Can you do this without
\# creating extra lists?

Pictorial Notation for Sequence Assertions

Equivalent to:
Property p holds on all items in b[0..h-1], and property q holds on all items in b[h.k].
(The precise location of the "vertical bars" matters.)

Can also indicate single items.

((h +1$)-\mathrm{h}=1$; it's all consistent, hurrah.)

Partition Algorithm

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:
pre:
h k
- Swap elements of $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ and store in i to truthify postcondition:

post: b	$<=x$	x	$>=x$

- x is called the pivot value
- x is not a program variable, but a standin for a number: value initially in $\mathrm{b}[\mathrm{h}]$

Motivation: A Famous Sorting Function

def qsort(b, h, k):
"""Make b[h..k] sorted.
Pre: b: list of ints; k>=h-1"""
Clicker Q2: base case if $\mathrm{k}<\mathrm{h}$: \# empty is sorted return
$\mathrm{i}=\operatorname{partition}(\mathrm{b}, \mathrm{h}, \mathrm{k})$
Clicker Q1: recursive case
def partition(b, h, k):
"""Let $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ be the pivot
value. Rearrange $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ so that there is an i where
b[h.i-l] <= x, b[i]=x; b[i+l..k]
$>=x$. Return i.
Pre: k>=h"""
\# Can you do this in place,
\# i.e., w/out
\# creating extra lists?

An Invariant to Guide Our Thinking

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $b[h . . k]$ and store in i to truthify post:

- Agrees with precondition when $\mathrm{i}=\mathrm{h}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$;
Return index of pivot point. Assume a swwap function _swap(b,ind1, indz).
Pre: $\mathrm{k}>=\mathrm{h}$ "" $"$

CLICKER Q5

\# invariant: $\mathrm{b}[\mathrm{h} . \mathrm{i} \mathrm{i} \mathrm{l}]$ < $\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{x}, \mathrm{b}[\mathrm{i}+1 . \mathrm{j} \mathrm{j}-\mathrm{l}]$ unknown while CLICKER Q4
if $b[i+1]>=x:$
\# Move to end of block.
$b[i+1], b[j-1]=b[j-1], b[i+1]$
$\mathrm{j}=\mathrm{j}-\mathrm{l}$
else: \#b[i+1]<x

CLICKER QS

\# post: b[h.i-1] < $\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[\mathrm{i}+1 . \mathrm{k}]$ >= x
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: b[h..i-1] <x, b[i] = x, b[j..k] >= x while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
$b[i+1], b[j-1]=b[j-1], b[i+1]$
$j=j-1$
else: \#b[i+1]<x
b[i], b[i+l] = b[i+l], b[i]
$\mathrm{i}=\mathrm{i}+1$
\# post: b[h..i-l] < x, b[i] is x, and b[i+1..k] >= x return i

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition
- The invariant is true at the beginning and at the end
- The four loop design questions (memorize them)

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does repetend make progress toward termination?
4. How does repetend keep the invariant true?

Famous "Sort-Like" Example

- Dutch national flag: tri-color
- Sequence of $h . . \mathrm{k}$ of red (<0), white $(=0)$, blue (>0) "pixels"
- Arrange to put <0 first, then $=0$, then >0, return "split pts"
pre: b

(values in h..k are unknown)

inv: b

h		i		k
<0	?	$=0$	>0	

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""(DNF explanation omitted for space.)
Returns: split-points as a tuple (i,j)"""
\# init?

\# inv: b[h..t-l] < 0, b[t..i-l] ?, b[i..j] = 0, b[j+l..k] > 0 while t < i :
if $b[i-1]<0$:
\# what?

$$
\text { elif } b[i-1]==0 \text { : }
$$

\# what?
else:
\# what?
\# post: b[h.i. i l] $<0, \mathrm{~b}[\mathrm{i} . \mathrm{j} \mathrm{j}]=0, \mathrm{~b}[\mathrm{j}+\mathrm{l} . . \mathrm{k}]>0$

return (i, j)

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k}$;
\# inv: b[h.t-l] < 0, b[t..i-l] ?, b[i..j] = 0, b[j+l...k] > 0 while t < i :
if $b[i-1]<0$:
$b[i-1], b[t]=b[t], b[i-1]$

$$
t=t+1
$$

elif $\mathrm{b}[\mathrm{i}-1]==0$:
$\mathrm{i}=\mathrm{i}-\mathrm{l}$
else:

$b[-1], b[j]=b[j], b[i-1$
$\mathrm{i}=\mathrm{i}-1 ; \mathrm{j}=\mathrm{j}-1$
\# post: b[h.i-l $]<0, b[i . . j]=0, b[j+l . . k]>0$
return (i, j)

