CS1110

Lecture 20: Sequence algorithms

Announcements
Upcoming schedule
Plan as of March 29, 2013, when these slides were printed:
Today (April 4): A4 due, A6 out
Tu Apr 9: lecture on searching and sorting - on the exam
Probably a new lab exercise, for prelim exercise
Th Apr 11: lecture = review session
Fri Apr 12: A6 due? (may have changed since March 28).
Tu Apr 16: lecture = office hours, in Thurston 102
Exam that evening, same location as before
Probably no new lab exercise that week
Slides by D. Gries, L. Lee, S. Marscher, W. White

Sorting: A Key Algorithmic Family

Q: Given a list of items, how can we arrange for them to be sorted in increasing order, in a timeand space-efficient manner?

Applications: making items easier to find. ${ }^{1}$
def sort(b, h, k):
"""Make b[h..k] sorted. Pre: b: list of ints; k>=h-l"""
\# start with b[h], and move it somewhere...?
${ }^{1}$ Also, computing poker-hand scores.

Motivation: A Famous Sorting Function	
def qsort $(\mathrm{b}, \mathrm{h}, \mathrm{k})$: ""Make b[h..k] sorted. Pre: b: list of ints; $\mathrm{k}>=\mathrm{h}-1$ ""	def partition(b, h, k): """Let $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ be the pivot value. Rearrange $b[h . k]$ so
Clicker Q2: base case	that there is an i in h.i. where $b[h . i-1-1]<=x, b[i]=x ;$ $b[i+1 . . k]>=x$. Return i.
$\mathrm{i}=\operatorname{partition}(\mathrm{b}, \mathrm{h}, \mathrm{k})$	Pre: k>=h""
Clicker Q1: recursive case	\# Can you do this without \# creating extra lists?

Partition Algorithm

- Given a sequence $b[h . . k]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $b[h . . k]$ and store in i to truthify post

into
or

$$
\begin{aligned}
& \text { - } \mathrm{x} \text { is called the pivot value } \\
& \mathrm{x} \text { is not a program variable, but } \\
& \text { a standin for a number: value } \\
& \text { initially in } b[\mathrm{~h}]
\end{aligned}
$$

Pictorial Notation for Sequence Assertions

Equivalent to:
Property p holds on all items in b[0..h-1], and property q holds on all items in $b[h . . k]$.
(The precise location of the "vertical bars" matters.)

Can also indicate single items.

$((\mathrm{h}+1)-\mathrm{h}=1$; it's all consistent, hurrah.)

An Invariant to Guide Our Thinking

```
- Given a sequence \(b[h . \mathrm{k}]\) with some value x in \(\mathrm{b}[\mathrm{h}]\) :
```


- Swap elements of $b[h . . k]$ and store in j to truthify post:

- Agrees with precondition when $\mathrm{i}=\mathrm{h}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition - The invariant is true at the beginning and at the end
- The four loop design questions (memorize them)

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does repetend make progress toward termination?
4. How does repetend keep the invariant true?

Linear Search (Index/Find Version)

def linear_search(b,c,h):	Analyzing the Loop
"""Returns: index of lst occurrence of c	1. Does the initialization
in b[h..], or -1 if not found"""	make inv true?
\# Store in i the index of the first c in b[h..] \# what init? 2. Is post true when inv is true and condition is false?	
\# invariant: c is not in b[0..i-1]	3. Does the repetend make progress?
while \# what?	4. Does the repetend keep \#nv true?

\# post: $\mathrm{b}[\mathrm{i}]==\mathrm{c}$ and c is not in $\mathrm{b}[\mathrm{h} . \mathrm{i}-1]$
return i if i < len(b) else -l

