
CS1110	
 Lecture	
 20	
 (sequence	
 algs):	
 4/4/13	

1	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 20: Sequence algorithms	

CS1110

Upcoming schedule	

Plan as of March 29, 2013, when these slides were printed:	

Today (April 4): A4 due, A6 out	

Tu Apr 9: lecture on searching and sorting – on the exam	

 Probably a new lab exercise, for prelim exercise	

Th Apr 11: lecture = review session	

Fri Apr 12: A6 due? (may have changed since March 28).	

Tu Apr 16: lecture = office hours, in Thurston 102 	

 Exam that evening, same location as before	

 Probably no new lab exercise that week	

	

	

Sorting: A Key Algorithmic Family 	

Q: Given a list of items, how can we arrange for

them to be sorted in increasing order, in a time-
and space-efficient manner?	

	

 Applications: making items easier to find.1 	

 	

def sort(b, h, k):

 """Make b[h..k] sorted. Pre: b: list of ints; k>=h-1"""

 # start with b[h], and move it somewhere...?

	

	

 1Also, computing poker-hand scores.	

	

Motivation: A Famous Sorting Function	

def qsort(b, h, k):

 """Make b[h..k] sorted.

 Pre: b: list of ints; k>=h-1"""

 i = partition(b, h, k)

qsort(b,0,i-1)

 qsort(b,i+1,k) 	

def partition(b, h, k):

 """Let x = b[h] be the pivot
value. Rearrange b[h..k] so
that there is an i in h..i
where b[h..i-1] <= x, b[i]=x;
b[i+1..k] >=x. Return i.

Pre: k>=h"""

Can you do this without

creating extra lists?

Clicker Q2: base case	

Clicker Q1: recursive case	

Pictorial Notation for Sequence Assertions	

 	

b 	

0 h k	

 	

h h+1	

Equivalent to: 	

Property p holds on all items in b[0..h-1], and
property q holds on all items in b[h..k].	

(The precise location of the "vertical bars" matters.)	

	

 Can also indicate single items.	

 ((h +1) – h = 1; it's all consistent, hurrah.)	

 	

	

some property p	

 some property q	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in i to truthify post:	

	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h i k	

 1 2 3 1 3 4 5 6 8	

b	

h i k	

or	

•  x is called the pivot value	

  x is not a program variable, but

a standin for a number: value
initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

An Invariant to Guide Our Thinking	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when i = h, j = k+1	

•  Agrees with postcondition when j = i+1 	

CS1110	
 Lecture	
 20	
 (sequence	
 algs):	
 4/4/13	

2	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h];

 Return index of pivot point. Assume a swap function _swap(b,ind1, ind2).

 Pre: k>=h"""

 CLICKER Q5

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x, b[i+1..j-1] unknown

 while CLICKER Q4

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 CLICKER Q3

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

Developing Algorithms on Sequences	

•  Specify the algorithm by giving its precondition ���
and postcondition as pictures.	

•  Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition 	

  The invariant is true at the beginning and at the end	

•  The four loop design questions (memorize them)	

1.  How does loop start (how to make the invariant true)?	

2.  How does it stop (is the postcondition true)?	

3.  How does repetend make progress toward termination?	

4.  How does repetend keep the invariant true?	

Linear Search (Generalizable index/find)	

no such here	

 i	

h k	

?	

h k	

pre: b	

 no such here v ? 	

h i k 	

 post: b	

 b	

OR	

 no such here ? 	

h i k 	

 inv: b	

"v"= "victory": a desired
item	

Linear Search (Index/Find Version)	

def linear_search(b,c,h):

 """Returns: index of 1st occurrence of c

 in b[h..], or -1 if not found"""

 # Store in i the index of the first c in b[h..]

 # what init?

 # invariant: c is not in b[0..i-1]

 while # what?

 #what?

 # post: b[i] == c and c is not in b[h..i-1]

 return i if i < len(b) else -1

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

Famous "Sort-Like" Example 	

•  Dutch national flag: tri-color 	

  Sequence of 0..n-1 of red, white, blue "pixels"	

  Arrange to put reds first, then whites, then blues 	

? 	

0 n	

pre: b	

 reds whites blues 	

0 n	

post: b	

(values in 0..n-1 are unknown)	

inv: b reds whites ? blues	

0 j k l n	

b[0..j-1] red, b[j..k-1] white, b[l..n-1] blue, b[k..l-1] unknown	

	

	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """(DNF explanation omitted for space.)

 Returns: split-points as a tuple (i,j)"""

 # init?

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 # what?

 elif b[i-1] == 0:

 # what?

 else:

 # what?

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

-1 -2 -1 0 0 0 3 6 3	

h t j k	

