
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 19: Loop invariants	

CS 1110

Prelim 2 conflicts	

Today (April 2) is two

weeks before the
prelim, and the deadline
for submitting prelim

conflicts.	

Instructor travel	

This week and the next
two weeks, Profs. Lee
and Marschner will be
traveling on and off.
Instructor office hours
are unaffected, though
there will sometimes be
just one of us available.	

While-Loops and Flow	

print 'Before while'

count = 0

i = 0

while i < 3:

 print 'Start loop '+`i`

count = count + i

i = i + 1

print 'End loop '

print 'After while'

Output:
Before while

Start loop 0

End loop

Start loop 1

End loop

Start loop 2

End loop

After while

	

	

Some Important Terminology	

•  assertion: true-false statement placed in a program to
assert that it is true at that point	

§  Can either be a comment, or an assert command	

•  precondition: assertion placed before a statement	

§  Same idea as function precondition, but more general	

•  postcondition: assertion placed after a statement	

•  loop invariant: assertion supposed to be true before

and after each iteration of the loop	

§  Distinct from attribute invariant	

•  iteration of a loop: one execution of its repetend	

Some Important Terminology	

•  assertion: true-false statement placed in a program to
assert that it is true at that point	

§  Can either be a comment, or an assert command	

•  precondition: assertion placed before a statement	

§  Same idea as function precondition, but more general	

•  postcondition: assertion placed after a statement	

•  loop invariant: assertion supposed to be true before

and after each iteration of the loop	

§  Distinct from attribute invariant	

•  iteration of a loop: one execution of its repetend	

Gives methodology for designing loops	

Assertions versus Asserts	

•  Assertions prevent bugs 	

§  Help you keep track of

what you are doing	

•  Also track down bugs 	

§  Make it easier to check
belief–code mismatches	

•  The assert statement is
also an assertion	

§  an assertion you are

asking Python to enforce	

§  Cannot always convert a

comment to an assert	

	

 # x is the sum of 1..n	

x	

 ?	

 n	

 3	

x	

 ?	

 n	

 0	

x	

 ?	

 n	

 1	

Comment form
of the assertion.	

The root ���

of all bugs!	

Preconditions & Postconditions	

•  Precondition: assertion
placed before a segment	

•  Postcondition: assertion
placed after a segment ���
	

x = sum of 1..n-1

x = x + n

n = n + 1

x = sum of 1..n-1

precondition	

postcondition	

1 2 3 4 5 6 7 8 	

x contains the sum of these (6)	

n	

n	

1 2 3 4 5 6 7 8 	

x contains the sum of these (10)	

Relationship Between Two	

	

If precondition is true, then
postcondition will be true	

Solving a Problem	

x = sum of 1..n

n = n + 1

x = sum of 1..n

precondition	

postcondition	

	

What statement do you ���
put here to make the
postcondition true?	

A: x = x + 1	

B: x = x + n	

C: x = x + n+1	

D: None of the above	

E: I don’t know	

Solving a Problem	

x = sum of 1..n

n = n + 1

x = sum of 1..n

precondition	

postcondition	

	

What statement do you ���
put here to make the
postcondition true?	

A: x = x + 1	

B: x = x + n	

C: x = x + n+1	

D: None of the above	

E: I don’t know	

Remember the new value of n	

Invariants: Assertions That Do Not Change	

x = 0; i = 2

while i <= 5:

x = x + i*i

 i = i +1

x = sum of squares of 2..5

	

Invariant:	

	

x = sum of squares of 2..i-1	

 in terms of the range of integers
that have been processed so far	

i = 2	

i <= 5	

i = i +1	

true	

false	

x = x + i*i	

The loop processes the range 2..5	

# invariant	

•  Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)	

Invariants: Assertions That Do Not Change	

x = 0; i = 2

Inv: x = sum of squares of 2..i-1

while i <= 5:

 x = x + i*i

 i = i +1

Post: x = sum of squares of 2..5

	

	

i = 2	

i <= 5	

i = i +1	

true	

false	

x = x + i*i	

The loop processes the range 2..5	

# invariant	

x 	

 0	

i 	

 ?	

 2	

4	

3	

13	

4	

29	

5	

54	

6	

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates	

Integers that have 	

been processed:	

	

Range 2..i-1: 	

 2..1 (empty)	

2	

2..2 	

, 3	

2..3	

, 4	

2..4	

, 5	

2..5	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

Designing Integer while-loops	

Process integers in a..b

inv: integers in a..k-1 have been processed

k = a

while k <= b:

 process integer k

 k = k + 1

post: integers in a..b have been processed

	

Command to do something 	

Equivalent postcondition 	

true	

init	

 cond	

k= k +1;	

false	

Process k	

invariant	

invariant	

Designing Integer while-loops	

1.  Recognize that a range of integers b..c has to be processed	

2.  Write the command and equivalent postcondition	

3.  Write the basic part of the for-loop	

4.  Write loop invariant	

5.  Figure out any initialization	

6.  Implement the repetend (process k)	

Process b..c

Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed

while k <= c:

 # Process k

 k = k + 1

Postcondition: range b..c has been processed

	

	

Finding an Invariant	

Make b True if no int in 2..n-1 divides n, False otherwise

b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:

Process k;

if n % k == 0:

 b = False

 k = k +1

b is True if no int in 2..n-1 divides n, False otherwise

	

What is the invariant?	

•  // b = “no int in 2..n-1 divides n”	

1 2 3 … k-1 k k+1 … n	

Command to do something 	

Equivalent postcondition 	

Finding an Invariant	

set x to # adjacent equal pairs in s[0..len(s)-1]

invariant: ???

k = 0

while k < len(s):

 # Process k;

 k = k +1

x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 	

Equivalent postcondition 	

A: 0..k	

B: 1..k	

C: 0..k–1 	

D: 1..k–1	

E: I don’t know	

A: x = no. adj. equal pairs in s[1..k]	

B: x = no. adj. equal pairs in s[0..k]	

C: x = no. adj. equal pairs in s[1..k–1]	

D: x = no. adj. equal pairs in s[0..k–1]	

E: I don’t know	

k: next integer to process.���
Which have been processed?	

 What is the invariant?	

for s = 'ebeee', x = 2	

Reason carefully about initialization	

s is a string; len(s) >= 1

Set c to largest element in s

c = ??

k = ??

inv:

while k < len(s):

 # Process k

 k = k+1

c = largest char in s[0..len(s)–1]

	

1.  What is the invariant?	

2.  How do we initialize c and k?	

c is largest element in s[0..k–1]	

Command to do something 	

Equivalent postcondition 	

An empty set of characters or integers has no maximum. Therefore,	

be sure that 0..k–1 is not empty. You must start with k = 1.	

A: k = 0; c = s[0]

B: k = 1; c = s[0]

C: k = 1; c = s[1]

D: k = 0; c = s[1]

E: None of the above	

