
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 18: While loops	

CS 1110

Prelim 2 conflicts	

If you have a conflict

you need to submit the
information in CMS.
We need a little more
information than for
Prelim 1—please see
the Exams page of the

CS1110 website.	

Instructor travel	

Over the next three

weeks Profs. Lee and
Marschner will be

traveling on and off.
Instructor office hours
are unaffected, though
there will sometimes be
just one of us available.	

Recall: For Loops	

Print contents of seq�
x = seq[0]�
print x�
x = seq[1]�
print x�
…�
x = seq[len(seq)-1]�
print x

 The for-loop:	

 for x in seq:�
 print x

•  Key Concepts	

§  loop sequence: seq

§  loop variable: x

§  body: print x

§ Also called repetend	

Iteration: Doing things repeatedly	

1.  Process each item in a sequence	

§  Compute aggregate statistics for a dataset, ���

such as the mean, median, standard deviation, etc.	

§  Send everyone in a Facebook group an appointment time	

2.  Perform n trials or get n samples	

§  Draw n cards to make a poker hand	

§  Run a protein-folding simulation for 106 time steps	

3.  Do something an unknown  
number of times	

§  CUAUV team, vehicle keeps ���

moving until reached its goal 
	

 for x in sequence:

 process x

 for x in range(n):

 do next thing

????

R
ic

ha
rd

 K
in

g"

Beyond Sequences: The while-loop

while <condition>:

 statement 1

 …

 statement n

	

•  Relationship to for loop	

§  Broader notion of
“still stuff to do”

§  Must ensure condition
eventually becomes false	

§  You explicitly manage
what changes per iteration	

condition	

true	

false	

repetend	

repetend or body	

While-Loops and Flow	

print 'Before while'

count = 0

i = 0

while i < 3:

 print 'Start loop '+`i`

count = count + I

i = i + 1

print 'End loop '

print 'After while'

Output:
Before while

Start loop 0

End loop

Start loop 1

End loop

Start loop 2

End loop

After while

	

	

while Versus for

 # process range b..c-1

 for k in range(b,c)

 process k

 # process range b..c-1

 k = b

 while k < c:

 process k

 k = k+1

Must remember to increment	

 # process range b..c

 for k in range(b,c+1)

 process k

 # process range b..c

 k = b

 while k <= c:

 process k

 k = k+1

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	

Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	

 	

Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	

 	

Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	

 	

Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

A: nothing	

B: 2,1	

C: 1	

D: 2	

E: something else	

What does 2..1 contain?	

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	

Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	

 	

Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	

 	

Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	

 	

Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

•  The notation m..n, always implies that m <= n+1	

§  So you can assume that even if we do not say it	

§  If m = n+1, the range has 0 values	

while Versus for

 # table of squares to N

 seq = []

 n = floor(sqrt(N)) + 1

 for k in range(n):

 seq.append(k*k)

 # table of squares to N

 seq = []

 k = 0

 while k*k < N:

 seq.append(k*k)

 k = k+1

Have to know in advance	

where to stop	

while Versus for

Table of n Fibonacci nums

fib = [1, 1]

for k in range(2,n):

 fib.append(fib[-1] + fib[-2])

Fibonacci table up to N

fib = [1, 1]

while fib[-1] + fib[-2] < N:

 fib.append(fib[-1] + fib[-2])

Sometimes you don’t use the	

loop variable at all	

Don’t need to have a loop	

variable if you don’t need one	

Fibonacci numbers:	

	

F0 = 1	

	

F1 = 1	

	

Fn = Fn–1 + Fn–2	

Cases to use while

Remove all 3’s from list t

i = 0

while i < len(t):

 # no 3’s in t[0..i–1]

 if t[i] == 3:

 del t[i]

 else:

 i += 1

Sometimes you want to modify	

the sequence	

Stopping point
keeps changing	

Remove all 3’s from list t

while 3 in t:

 t.remove(3)

Maybe this one is easier with	

no numerical counter	

Cases to use while	

def sqrt(c):

 x = c/2

 while abs(x*x – c) > 1e-6:

 x = x / 2 + c / (2*x)

 return x

Sometimes your termination���
condition has nothing to do���

with counters	

Patterns for Processing Integers	

range a..b-1	

i = a

while i < b:

 process integer I	

 i = i + 1	

store in count # of '/'s in String s

count = 0

i = 0

while i < len(s):

 if s[i] == '/':

 count= count + 1

 i += 1

count is # of '/'s in s[0..s.length()-1]

range c..d	

i= c

while i <= d:

 process integer I	

 i= i + 1

Store in double var. v the sum

1/1 + 1/2 + …+ 1/n

v = 0; # call this 1/0 for today

i = 0

while i <= n:

 v = v + 1.0 / i

 i += 1

v= 1/1 + 1/2 + …+ 1/n

