
Lecture	 17:	 3/28/13	

CS1110	 Spring	 2013:	 While	 Loops	 1	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 18: While loops	

CS 1110

Prelim 2 conflicts	

If you have a conflict

you need to submit the
information in CMS.
We need a little more
information than for
Prelim 1—please see
the Exams page of the

CS1110 website.	

Recall: For Loops	

Print contents of seq�
x = seq[0]�
print x�
x = seq[1]�
print x�
…�
x = seq[len(seq)-1]�
print x

 The for-loop:	

 for x in seq:�
 print x

•  Key Concepts	

§  loop sequence: seq
§  loop variable: x
§  body: print x
§ Also called repetend	

Iteration: Doing things repeatedly	

1.  Process each item in a sequence	

§  Compute aggregate statistics for a dataset, ���

such as the mean, median, standard deviation, etc.	

§  Send everyone in a Facebook group an appointment time	

2.  Perform n trials or get n samples	

§  Draw n cards to make a poker hand	

§  Run a protein-folding simulation for 106 time steps	

3.  Do something an unknown  
number of times	

§  CUAUV team, vehicle keeps ���

moving until reached its goal 
	

 for x in sequence:
 process x

 for x in range(n):
 do next thing

????

Beyond Sequences: The while-loop

while <condition>:
 statement 1
 …
 statement n

	

•  Relationship to for loop	

§  Broader notion of
“still stuff to do”

§  Must ensure condition
eventually becomes false	

§  You explicitly manage
what changes per iteration	

condition	

true	

false	

repetend	

repetend or body	

while Versus for

 # process range b..c-1
 for k in range(b,c)
 process k

 # process range b..c-1
 k = b
 while k < c:
 process k
 k = k+1

Must remember to increment	

 # process range b..c
 for k in range(b,c+1)
 process k

 # process range b..c
 k = b
 while k <= c:
 process k
 k = k+1

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	
Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	
 	
Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	
 	
Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	
 	
Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

A: nothing	

B: 2,1	

C: 1	

D: 2	

E: something else	

What does 2..1 contain?	

Lecture	 17:	 3/28/13	

CS1110	 Spring	 2013:	 While	 Loops	 2	

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	
Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	
 	
Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	
 	
Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	
 	
Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

•  The notation m..n, always implies that m <= n+1	

§  So you can assume that even if we do not say it	

§  If m = n+1, the range has 0 values	

while Versus for

 # table of squares to N
 n = floor(sqrt(N)) + 1
 for k in range(n):
 seq[k] = k*k

 # table of squares to N
 k = 0
 while k*k < N:
 seq[k] = k*k
 k = k+1

while is more flexible, but
is tricker to use	

Have to know in advance	

where to stop	

while Versus for

Table of n Fibonacci nums
fib = [1, 1]
for k in range(2,n):
 fib.append(fib[-1] + fib[-2])

Fibonacci table up to N
fib = [1, 1]
while fib[-1] + fib[-2] < N:
 fib.append(fib[-1] + fib[-2])

Sometimes you don’t use the	

loop variable at all	

Don’t need to have a loop	

variable if you don’t need one	

A numerical iteration	

def sqrt(c):
 x = c/2
 while abs(x*x - c) > 1e-6:
 x = x / 2 + c / (2*x)
 print x
 return x

Patterns for Processing Integers	

range a..b-1	

i = a
while i < b:
 process integer I	

 i = i + 1	

store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):
 if s[i] == '/':
 count= count + 1
 i= i +1
count is # of '/'s in s[0..s.length()-1]

range c..d	

i= c
while i <= d:
 process integer I	

 i= i + 1

Store in double var. v the sum
1/1 + 1/2 + …+ 1/n
v = 0; # call this 1/0 for today
i = 0
while i <= n:
 v = v + 1.0 / i
 i= i +1
v= 1/1 + 1/2 + …+ 1/n

While-Loops and Flow	

print 'Before while'
count = 0
i = 0
while i < 3:
 print 'Start loop '+`i`

count = count + I
i = i + 1
print 'End loop '

print 'After while'

Output:
Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while
	

	

