
Lecture	
 17:	
 3/26/13	

CS1110	
 Spring	
 2013:	
 Card	
 Tricks	
 1	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 17: Card Tricks	

CS 1110

A4	

…is out. Printouts in
lecture, version with

any later corrections on
the web.	

Academic Integrity	

We have some too-

similar handins for A3,
and will have to pursue

AI cases. Please
review the CS1110 web

page on the subject,
particularly “Specific

issues in CS1110.”	

No lab	

There is no new lab
exercise this week.	

Quick poker primer	

•  Basic (straight) version: 5 random cards in your hand	

§  2 of same rank: pair (e.g., 3C 3D 5D 6H 7S)	

§  3 of same rank: three of a kind (5C 5D 5H 6H 7S)	

§  4 of same rank: four of a kind (6C 6D 6H 6S 7S)	

§  Two separate pairs: two pair (5C 5D 6D 6H 7S)	

§  3 of one rank, 2 of another: full house (5C 5D 6D 6H 6S)	

§  All cards in rank sequence: straight (5C 6D 7D 8H 9S)	

§  All cards of same suit: flush (5H 7H 8H 10H KH)	

§  All in seq. and same suit: straight flush (5D 6D 7D 8D 9D)	

•  Less probable hands beat more probable hands	

•  Some games have > 5 cards; you choose 5 cards	

Goal for this lecture	

•  Plan: randomly deal out N hands (like maybe a million) and see
how many are full houses, straights, etc. The ratio of the number
of straights dealt to N is an estimate of the probability of being
dealt a straight.	

•  This requires us to extend our Hand class so that it can recognize
all eight poker hands. We’ll do this, develop testing code along
the way, and then answer the question with this Monte Carlo
experiment.	

What are the probabilities of all the
various poker hands, with varying

numbers of cards in the hand?	

Stage 1: start implementing	

•  Stub in methods	

•  Implement some easy ones	

•  Python features:	

§ multi-way comparison	

§  conversion to bool in conditionals	

multi-way comparisons	

x < y < z means x < y and y < z

w == x == y == z means w == x and x == y and y == z

One difference: middle operands are not evaluated twice.	

conversion to Boolean in conditionals	

4.0 + 2 automatically converts 2 to float	

if x: … automatically converts x to bool.	

if n: means if n != 0:
—for numeric types: ���
	

 	

 	

 	

 	

 	

 zero is false, nonzero true	

if lst: means if len(list) != 0:
—for sequence types: ���
	

 	

 	

 	

 	

 	

 	

 	

 empty is false, nonempty true	

Stage 2: start testing	

•  Form a plan for testing the whole class	

•  Start by setting up tests for the first methods	

•  Python features:	

§  positional and keyword arguments	

§  assert statement	

•  New patterns:	

§  __init__ with multiple disjoint ways to initialize	

§  streamlining test cases with lists	

Lecture	
 17:	
 3/26/13	

CS1110	
 Spring	
 2013:	
 Card	
 Tricks	
 2	

positional and keyword arguments	

Make arguments optional by giving defaults: def f(x, y=3, z=4):	

Then the arguments can be matched to parameters two ways:	

…by position: f(1) (x=1, y=2, z=3) or f(5, 6) (x=5, y=6, z=4)	

…by keyword: f(1, z=7) (x=1, y=2, z=7) or f(x=5, y=6) (x=5, y=6, z=4)	

the assert statement	

assert <Boolean expression> [, <string>]	

This statement is for debugging: if the Boolean expression is
false, it stops the program, generating an error with a stack trace.
If you include the optional string, it is also part of the error
message. This statement is useful when the error message from
cunittest2.assert_equal doesn’t contain the information you need.	

Stage 3: complete implementation	

•  Counting suit and rank histograms is useful	

•  Also simplifies generalization to more cards	

•  Python features:	

§  augmented assignment (+= and friends)	

§  __str__ vs. __repr__	

•  new patterns:	

§  computing sums using a for loop	

§  computing several sums in parallel	

§  computing a maximum using a for loop	

augmented assignment	

x += y is shorthand for x = x + y

One difference: expression on the left is not evaluated twice.	

special methods __str__ and __repr__	

We have seen the special method __str__ that is called to
generate a readable string representation of an object. There is
also __repr__ which does something similar.	

__str__ is used by str() and print. Meant for the user to read.	

__repr__ is used by repr(), the interactive prompt, and back-
quotes (`x`). Should be unambigous, for the programmer.	

Ideally, repr() returns exactly what you would put in your
program to create that value—recall how strings work.	

Stage 4: the actual experiment	

•  Now we can finally answer the question!	

•  Generate N hands, count number of each type	

•  Python features:	

§  Boolean to integer conversion	

•  new patterns:	

§ Monte Carlo estimation	

Boolean to integer conversion	

Conversions involving bool go both ways. When you convert a
bool to a numeric type, True is 1 and False is 0.	

Example: x += (y > 3) increments x by 1 if y is greater than 3.	

Monte Carlo methods	

•  In CS, “Monte Carlo” is the idea
of a program that runs a random
experiment many times to
estimate some value.	

•  It can estimate many quantities
for which it is very hard or
impossible to derive formulas.	

•  A nice example of trading long
computation time for ease of
programming!	

Casino de Monte Carlo in Monaco.	

W
ik

im
ed

ia
 c

om
m

on
s

/ W
ig

ul
f"

