
Lecture	 16:	 3/14/13	

CS1110	 Spring	 2013:	 Using	 Classes	
Effec<vely	 1	

Important!	

YES	

 class Point(object):
 """Instances are 3D points
 x [float]: x coord
 y [float]: y coord
 z [float]: z coord"""

 …

NO	

class Point:
 """Instances are 3D points
 x [float]: x coord
 y [float]: y coord
 z [float]: z coord"""

 …

“Classic” Classes	

No reason to use these	

3.0-Style Classes	

Well-designed	

Designing types	

•  One definition of a type: a set of objects with the
operations on those objects.	

§  int—set: integers; ops: +, –, *, /, …	

§  Time—set: times of day; ops: time span, before/after, …	

§  Worker—set: all possible workers; ops: hire, pay, promote, …	

§  Rectangle—set: all axis-aligned rectangles in 2D; ops:

contains, intersect, …	

•  When you define a class, you are (should be) thinking

of a “real type” you want to create	

§  Python gives you the tools to do this, but doesn’t do it for you	

§  Physically, any object can take on any value	

§  Discipline is required to get what you want	

Making a class a type	

1.  Think about what values you want in the set	

§  What attributes? What values can they have?	

2.  Think about what operations you want	

§  Often influences the previous question	

•  To make (1) precise: write a class invariant	

§  A statement we promise ourselves to keep true at all times	

•  To make (2) precise: write specifications of methods	

§  A statement of what the method does and what it expects

(preconditions)	

•  Write your code to make these statements true!	

Planning out a class	

class Time(object):

"""Instances represent times of day.
Instance variables:
 hour [int]: hour of day, in 0..23�
 min [int]: minute of hour, in 0..59
"""

def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
 """Move this time <hours> hours
 and <mins> minutes into the future.�
 Pre: hours >= 0; mins in 0..59"""

def is_pm(self):
 """Returns: this time is noon or �
 later."""

class invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of Time instances.	

method specification	

States what the method does.	

Gives preconditions stating what is
assumed to be true of the arguments.	

Planning out a class	

class Rectangle(object):

"""Instances represent rectangular�
regions of the plane.
Instance variables:
 t [float]: y coordinate of top edge�
 l [float]: x coordinate of left edge�
 b [float]: y coordinate of bottom edge�
 r [float]: x coordinate of right edge
For all Rectangles, l <= r and b <= t.
"""

def __init__(self, t, l, b, r):
 """The rectangle [l, r] x [t, b]
 Pre: args are floats; l <= r; b <= t"""

def area(self):
 """Return: area of the rectangle."""

def intersection(self, other):
 """Return: new Rectangle describing
 intersection of self with other."""

class invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of Rectangle instances.	

method specification	

States what the method does.	

Gives preconditions stating what is
assumed to be true of the arguments.	

Planning out a class	

class Hand(object):
"""Instances represent a hand in cards.
Instance variables:
 cards [list of Card]: cards in the hand
This list is sorted according to the�
ordering defined by the Card class.
"""

def __init__(self, deck, n):
 """Draw a hand of n cards.
 Pre: deck is a list of >= n cards"""

def is_full_house(self):
 """Return: True if this hand is a full �
 house."""

def discard(self, k):
 """Discard the k-th card."""

class invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of Rectangle instances.	

method specification	

States what the method does.	

Gives preconditions stating what is
assumed to be true of the arguments.	

Lecture	 16:	 3/14/13	

CS1110	 Spring	 2013:	 Using	 Classes	
Effec<vely	 2	

Implementing a class	

•  All that remains is to fill in the methods. (All?!)	

•  When implementing methods:	

§ Assume preconditions are true	

§ Assume class invariant is true to start	

§  Ensure method specification is fulfilled	

§  Ensure class invariant is true when done	

•  Later, when using the class:	

§ When calling methods, ensure preconditions are true	

§  If attributes are altered, ensure class invariant is true	

Instance variables:
 hour [int]: hour of day, in 0..23�
 min [int]: minute of hour, in 0..59

Implementing an initializer	

def __init__(self, hour, min):
"""The time hour:min.�
Pre: hour in 0..23; min in 0..59"""

You put code here	

This is true to start	

This should be true���
at the end	

self.hour = hour
self.min = min

Instance variables:
 hour [int]: hour of day, in 0..23�
 min [int]: minute of hour, in 0..59

Instance variables:
 hour [int]: hour of day, in 0..23�
 min [int]: minute of hour, in 0..59

Implementing a method	

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.�
Pre: hours >= 0; mins in 0..59"""

You put code here	

This is also true to start	

This should be true���
at the end	

self.min = self.min + min
self.hour = (self.hour + hour +
 self.min / 60)
self.hour = self.hour % 24

This is true to start	

What we are supposed���
to accomplish	

The view from outside	

•  Invariants and preconditions
serve two purposes	

•  They are tools for you, as the
author, to think through your
plans in a disciplined way	

•  They communicate to the user*
of the class how they are
allowed to use it	

•  Together they are the interface
of the class	

§  interface between two programmers	

§  interface between two parts of the

program	

* …who might well be you!	

in•ter•face |ˈintərˌfās| noun	

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.	

• 	
chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.	

2. Computing a device or program
enabling a user to communicate with a
computer.	

• 	
a device or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.	

—The Oxford American Dictionary	

