Important!
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YES

NO

class Point(object):
"""Instances are 3D points
x [float]: x coord
y [float]: y coord
z [float]: z coord™"

class Point:

"""Instances are 3D points
x [float]: x coord

y [float]: y coord

z [float]: z coord""

“Classic” Classes
No reason to use these

3.0-Style Classes
Well-designed

Designing types

¢ One definition of a type: a set of objects with the
operations on those objects.
= int—set: integers; ops: +,—, *,/, ...
= Time—set: times of day; ops: time span, before/after, ...
= Worker—set: all possible workers; ops: hire, pay, promote, ...
= Rectangle—set: all axis-aligned rectangles in 2D; ops:
contains, intersect, ...
* When you define a class, you are (should be) thinking
of a “real type” you want to create
= Python gives you the tools to do this, but doesn’t do it for you
= Physically, any object can take on any value
= Discipline is required to get what you want

Making a class a type

Planning out a class

1. Think about what values you want in the set
= What attributes? What values can they have?
2. Think about what operations you want
= Often influences the previous question
* To make (1) precise: write a class invariant
= A statement we promise ourselves to keep true at all times
* To make (2) precise: write specifications of methods

= A statement of what the method does and what it expects
(preconditions)

* Write your code to make these statements true!

class Time(object):
""Instances represent times of day.
Instance variables:
hour [int]: hour of day, in 0..23

class invariant

States what attributes are present

and what values they can have.
min [int]: minute of hour, in 0..59 .

i fint] A statement that will always be

true of Time instances.

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):

method specification
"""Move this time <hours> hours }

and <mins> minutes into the future, - States what the method does.
Pre: hours >= 0; mins in 0..59"" Gives preconditions stating what is
assumed to be true of the arguments.
def is_pm(self):

"""Returns: this time is noon or

later.""

Planning out a class

class Rectangle(object):
"""Instances represent rectangular
regions of the plane.

Instance variables: class invariant

Planning out a class

class Hand(object):
""Instances represent a hand in cards.

. class invariant
Instance variables:

t [float]: y coordinate of top edge

1 [float]: x coordinate of left edge

b [float]: y coordinate of bottom edge

r [float]: x coordinate of right edge
For all Rectangles, I <=rand b <=t.

def __init__(self, t,1, b, p):

""The rectangle [l, r] x [t, b]

Pre: args are floats; 1 <=r; b <=t""
def area(self):

"""Return: area of the rectangle.""

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

States what attributes are present
and what values they can have.

A statement that will always be
true of Rectangle instances.

method specification

States what the method does.

Gives preconditions stating what is
assumed to be true of the arguments.
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cards [list of Card): cards in the hand
This list is sorted according to the
ordering defined by the Card class.

def __init__(self, deck, n):
"""Draw a hand of n cards.
Pre: deck is a list of >= n cards'

def is_full_house(self):
"""Return: True if this hand is a full
house. "™

def discard(self, k):
""Discard the k-th card.""

States what attributes are present
and what values they can have.

A statement that will always be
true of Rectangle instances.

method specification

States what the method does.

Gives preconditions stating what is
assumed to be true of the arguments.




Implementing a class

e All that remains is to fill in the methods. (All?!)
* When implementing methods:
= Assume preconditions are true
= Assume class invariant is true to start
= Ensure method specification is fulfilled
= Ensure class invariant is true when done
 Later, when using the class:
= When calling methods, ensure preconditions are true
= If attributes are altered, ensure class invariant is true
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Implementing an initializer

def __init__(self, hour, min):
""The time hour:min.

Pre: hour in 0..23; min in 0..59""" <4

self.hour = hour
self.min = min

Instance variables:
hour [int]: hour of day, in 0..23
min [int]: minute of hour, in 0..59

This is true to start

You put code here

This should be true
at the end

Implementing a method

Instance variables:
hour [int]: hour of day, in 0..23 This is true to start
min [int]: minute of hour, in 0..59
What we are supposed

| —"to accomplish

def increment(self, hours, mins):
"""Move this time <hours> hours 4=
and <mins> minutes into the future,
Pre: hours >= 0; mins in 0..59"""

This is also true to start

self. min = self.min + min

self.hour = (self.hour + hour +
self.min / 60)

self.hour = self.hour % 24

You put code here

Instance variables:
hour [int]: hour of day, in 0..23
min [int]: minute of hour, in 0..59

This should be true
at the end

The view from outside
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Invariants and preconditions
serve two purposes

They are tools for you, as the
author, to think through your
plans in a disciplined way
They communicate to the user*
of the class how they are
allowed to use it

Together they are the interface
of the class

= interface between two programmers

= interface between two parts of the
program

...who might well be you!

inetereface l'intorfas| noun

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.

chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.

IS}

. Computing a device or program
enabling a user to communicate with a
computer.

* adevice or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.

—The Oxford American Dictionary




