Important!

Lecture 16: 3/14/13

YES

NO

class Point(object):
"""Instances are 3D points
x [float]: x coord
y [float]: y coord
z [float]: z coord™"

class Point:

"""Instances are 3D points
x [float]: x coord

y [float]: y coord

z [float]: z coord""

“Classic” Classes
No reason to use these

3.0-Style Classes
Well-designed

Designing types

¢ One definition of a type: a set of objects with the
operations on those objects.
= int—set: integers; ops: +,—, *,/, ...
= Time—set: times of day; ops: time span, before/after, ...
= Worker—set: all possible workers; ops: hire, pay, promote, ...
= Rectangle—set: all axis-aligned rectangles in 2D; ops:
contains, intersect, ...
* When you define a class, you are (should be) thinking
of a “real type” you want to create
= Python gives you the tools to do this, but doesn’t do it for you
= Physically, any object can take on any value
= Discipline is required to get what you want

Making a class a type

Planning out a class

1. Think about what values you want in the set
= What attributes? What values can they have?
2. Think about what operations you want
= Often influences the previous question
* To make (1) precise: write a class invariant
= A statement we promise ourselves to keep true at all times
* To make (2) precise: write specifications of methods

= A statement of what the method does and what it expects
(preconditions)

* Write your code to make these statements true!

class Time(object):
""Instances represent times of day.
Instance variables:
hour [int]: hour of day, in 0..23

class invariant

States what attributes are present

and what values they can have.
min [int]: minute of hour, in 0..59 .

i fint] A statement that will always be

true of Time instances.

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):

method specification
"""Move this time <hours> hours }

and <mins> minutes into the future, - States what the method does.
Pre: hours >= 0; mins in 0..59"" Gives preconditions stating what is
assumed to be true of the arguments.
def is_pm(self):

"""Returns: this time is noon or

later.""

Planning out a class

class Rectangle(object):
"""Instances represent rectangular
regions of the plane.

Instance variables: class invariant

Planning out a class

class Hand(object):
""Instances represent a hand in cards.

. class invariant
Instance variables:

t [float]: y coordinate of top edge

1 [float]: x coordinate of left edge

b [float]: y coordinate of bottom edge

r [float]: x coordinate of right edge
For all Rectangles, I <=rand b <=t.

def __init__(self, t,1, b, p):

""The rectangle [l, r] x [t, b]

Pre: args are floats; 1 <=r; b <=t""
def area(self):

"""Return: area of the rectangle.""

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

States what attributes are present
and what values they can have.

A statement that will always be
true of Rectangle instances.

method specification

States what the method does.

Gives preconditions stating what is
assumed to be true of the arguments.

CS1110 Spring 2013: Using Classes
Effectively

cards [list of Card): cards in the hand
This list is sorted according to the
ordering defined by the Card class.

def __init__(self, deck, n):
"""Draw a hand of n cards.
Pre: deck is a list of >= n cards'

def is_full_house(self):
"""Return: True if this hand is a full
house. "™

def discard(self, k):
""Discard the k-th card.""

States what attributes are present
and what values they can have.

A statement that will always be
true of Rectangle instances.

method specification

States what the method does.

Gives preconditions stating what is
assumed to be true of the arguments.




Implementing a class

e All that remains is to fill in the methods. (All?!)
* When implementing methods:
= Assume preconditions are true
= Assume class invariant is true to start
= Ensure method specification is fulfilled
= Ensure class invariant is true when done
 Later, when using the class:
= When calling methods, ensure preconditions are true
= If attributes are altered, ensure class invariant is true

Lecture 16:

3/14/13

Implementing an initializer

def __init__(self, hour, min):
""The time hour:min.

Pre: hour in 0..23; min in 0..59""" <4

self.hour = hour
self.min = min

Instance variables:
hour [int]: hour of day, in 0..23
min [int]: minute of hour, in 0..59

This is true to start

You put code here

This should be true
at the end

Implementing a method

Instance variables:
hour [int]: hour of day, in 0..23 This is true to start
min [int]: minute of hour, in 0..59
What we are supposed

| —"to accomplish

def increment(self, hours, mins):
"""Move this time <hours> hours 4=
and <mins> minutes into the future,
Pre: hours >= 0; mins in 0..59"""

This is also true to start

self. min = self.min + min

self.hour = (self.hour + hour +
self.min / 60)

self.hour = self.hour % 24

You put code here

Instance variables:
hour [int]: hour of day, in 0..23
min [int]: minute of hour, in 0..59

This should be true
at the end

The view from outside

CS1110 Spring 2013: Using Classes
Effectively

Invariants and preconditions
serve two purposes

They are tools for you, as the
author, to think through your
plans in a disciplined way
They communicate to the user*
of the class how they are
allowed to use it

Together they are the interface
of the class

= interface between two programmers

= interface between two parts of the
program

...who might well be you!

inetereface l'intorfas| noun

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.

chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.

IS}

. Computing a device or program
enabling a user to communicate with a
computer.

* adevice or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.

—The Oxford American Dictionary




