
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 15: Defining and Using Classes	

CS 1110

Prelim 1	

…can be picked up in

lab this week.
Solutions will be posted

this week, after all
makeups are complete.	

Regrades	

If you find an error in

grading, write down the
issue clearly on a

separate note, attach it
to your exam book, and

hand it to us in class
before March 29.	

Recall: Objects as Data in Folders	

•  An object is like a manila folder	

•  It can contain variables	

§ Variables are attributes	

§  Can change values of an attribute���

(with assignment statements)	

•  It has a “tab” that identifies it	

§ Unique identifier assigned by Python	

§  This is fixed for the lifetime of the

object	

Point	

x 2.0

y 3.0

z 5.0

id1	

Unique���
identifier���

on tab	

Recall: Classes are Types for Objects	

•  Objects must have types	

§  Some types are built in (float, int, file, list, …)	

§  Other types are defined by classes	

§  Classes are how we add new types ���

to Python	

Classes	

 • Point���
 • RGB	

 • Turtle	

 • Window	

Types	

 • int���
 • float	

 • bool	

 • str	

Point	

x 2.0

y 3.0

z 5.0

id1	
 id8	

5	
 6	

0 1

5	

2

id1	

3

a list: contains
indexed items	

a class object:
contains only
named attributes	

class name	

Recall: Objects can have Methods	

•  Method: function tied to object	

§  Function call:���

<function-name>(<arguments>)	

§  Method call:���

<object-variable>.<function-call>	

§  Use of a method is a method call	

•  Example: p.distanceTo(q)
§  Both p and q act as arguments	

§  Very much like distanceTo(p, q)

id1	
p	

Point	

x 2.0

y 3.0

z 5.0

id1	

__init__(x, y, z)	

distanceFromOrigin()	

distanceTo(other)	

Point	

Machinery vs. use of machinery	

•  Classes in Python provide some very simple
machinery, and very few constraints on how you
use it.	

•  Learning to program with classes in Python
means learning two things:	

1.  how the machinery works (this lecture)	

2.  some ways to use the machinery effectively (next

lecture)	

The Class Definition	

 class <class-name>(object):

 """Class specification"""

 <function definitions>	

 <assignment statements>	

 <any other statements also allowed>	

Goes inside a
module, just ���

like a function
definition.	
keyword class

indicates a ���
class definition	

more on this later	

docstring, just
like a function
definition	

don’t forget the colon!	

to define
methods	
 …but not often used	

to define
variables	

class Example(object):
"""The simplest possible class."""
pass

Example	

Instances and attributes	

•  You can create instances of the class:	

e = Example()

§  Creates a new, empty object	

•  and access attributes of the class:	

Example.a = 29
print Example.a

§  Writing to one creates a new attribute in the class	

•  and access attributes of an instance:	

e.b = 42
print e.b

§  Rule: look first in the instance, then the class	

§  Writing to one creates a new attribute in the instance	

•  and that’s pretty much it!	

Example	

b 42

id2	

id2	
e

not the way we normally create
instance attributes! …more later	

a	

Example	

29

a “constructor expression”	

not the way we normally create
class attributes! …more later	

Populating a class with methods	

class Example2(object):
"""A class that defines some things."""

This is a class variable.

 a = 29

This is a method that
writes to an instance variable.
def set_b(self, x):
 self.b = x

This is a method that reads
from a class variable and an
instance variable.
def f(self):
 return self.a * self.b

a	

set_b()	

f()	

Example2	

29

Everything
defined in the
class definition
creates attributes
of the class.	

A variable that lives in a class is
a class variable.	

A function that lives in a
class defines a method.	

Every method has a
special first parameter
self that receives a
reference to the
instance the method
was called on.	

This assignment will create
an instance variable.	

Method calls	

Given class definition from previous slide:	

e = Example2()
§  constructor expression assigned to e
§  creates a new instance, stores ID in e

e.set_b(42)
§  method call has object + one argument	

§  turns into function call with 2 arguments	

§  value of e passed to self; 42 passed to x
§  assignment to self.b creates instance var.	

print e.f()
§  method call has object + no arguments	

§  turns into function call with 1 arguments	

§  value of e passed to self
§  attribute references find self.a in class,

self.b in instance	

self 	
x	

set_b:1

id2	
 42	

a	

set_b()	

f()	

Example2	

29

Example2	

b 42

id2	
 id2	
e

self 	

f:1

id2	

Initializing instances	

•  Instances are initially empty. 	

•  Usually we want to immediately ���

add some instance variables.	

•  To make this easy, Python will���

automatically call a method���
named __init__ (if you declared���
one) right after creating an ���
object, before the constructor ���
call returns.	

	

class Worker(object):�
 """An instance is a worker in a
 certain organization.
 Instances have these variables:
 lname [string]: Last name�
 ssn [int]: Social security�
 boss [Worker]: Immediate boss
 """

 def __init__(self, lname, ssn, boss):
 self.lname = lname
 self.ssn = ssn
 self.boss = boss

w = Worker("Obama", 1234, None)this statement creates a new Worker
instance, calls __init__ to set it up,
and stores the name into w.	

note two underscores	

gives access to the
instance being initialized	

Aside: The value None!
•  The boss field is a problem.	

§  boss is supposed to refer to ���
a Worker object	

§  But some workers might not
have a boss	

§  Maybe not assigned yet,
maybe the buck stops there. 	

•  Solution: use value None
§  None: Lack of (folder) name	

§  Will reassign the field later!	

•  Be careful with None variables	

§  var3.x gives error!	

§  There is no name in var3	

§  Which Point to use?	

id21	
var1	

id22	
var2	

None	
var3	

Point	

x 2.2

y 5.4

z 6.7

id21	

Point	

x 3.5

y –2.0

z 0.0

id22	

Evaluating a Constructor Expression	

Worker('Obama', 1234, None)

1.  Create a new object (folder) that
is an instance of the class	

§  Instance is initially empty	

2.  Call the method __init__ �
(if it exists)	

§  Pass folder ID to self	

§  Pass other arguments in order	

3.  Returns the object (folder) name
as final value of expression	

Worker	

ssn 1234

id32	

lname Obama

boss None

Making Arguments Optional	

•  We can assign default values
to __init__ arguments	

§  Write as assignments to

parameters in definition	

§  Parameters with default

values are optional	

•  Examples:	

§  p = Point() # (0,0,0)
§  p = Point(1,2,3) # (1,2,3)
§  p = Point(1,2) # (1,2,0)
§  p = Point(y=3) # (0,3,0)
§  p = Point(1,z=2) # (1,0,2)

class Point(object):	

 """Instances are points in 3d space
 x [float]: x coord
 y [float]: y coord
 z [float]: z coord"""

 def __init__(self, x=0, y=0, z=0):
 self.x = float(x)
 self.y = float(y)
 self.z = float(z)
 …

Making Arguments Optional	

•  We can assign default values
to __init__ arguments	

§  Write as assignments to

parameters in definition	

§  Parameters with default

values are optional	

•  Examples:	

§  p = Point() # (0,0,0)
§  p = Point(1,2,3) # (1,2,3)
§  p = Point(1,2) # (1,2,0)
§  p = Point(y=3) # (0,3,0)
§  p = Point(1,z=2) # (1,0,2)

class Point(object):	

 """Instances are points in 3d space
 x [float]: x coord
 y [float]: y coord
 z [float]: z coord"""

 def __init__(self, x=0, y=0, z=0):
 self.x = float(x)
 self.y = float(y)
 self.z = float(z)
 …

Assigns in order	

Use parameter name
when out of order	

Can mix two
approaches	

Not limited to methods.	

Can do with any function.	

What does str() do on class objects?	

•  Does NOT display contents	

>>> p = Point(1,2,3)
>>> str(p)
'<Point object at 0x1007a90>’

•  To display contents, you must
implement a special method
called __str__	

•  With the defns. on these slides:	

print Point(3,4,5)

produces the output:	

(3.0,4.0,5.0)

class Point(object):	

 """Instances are points in 3d space""”
 …
 def __str__(self):
 """Returns: string with contents"""
 return ('(' + self.x + ',' +
 self.y + ',' +
 self.z + ')')

Important!	

YES	

 class Point(object):
 """Instances are 3D points
 x [float]: x coord
 y [float]: y coord
 z [float]: z coord"""

 …

NO	

class Point:
 """Instances are 3D points
 x [float]: x coord
 y [float]: y coord
 z [float]: z coord"""

 …

“Classic” Classes	

No reason to use these	

3.0-Style Classes	

Well-designed	

