CS 1110

Lecture 15: Defining and Using Classes

4) N
Prelim 1

...can be picked up in
lab this week.
Solutions will be posted
this week, after all
makeups are complete.

- /

~
d Regrades

If you find an error in
grading, write down the
issue clearly on a
separate note, attach it
to your exam book, and
hand it to us in class

before March 29.
_ /

Slides by D. Gries, L. Lee, S. Marschner, W. White

Recall: Objects as Data in Folders

* An object 1s like a manila folder Unique
] 1dentifier
e Jt can contain variables ol
= Variables are attributes j

= Can change values of an attribute

id1
(with assignment statements) Point
It has a “tab” that identifies it 20
= Unique 1dentifier assigned by Python
« This is fixed for the lifetime of the ~ ° =
object 2| 5.0

Recall: Classes are Types for Objects

* (Objects must have types

= Some types are built in (float, int, file, list, ...)

= Other types are defined by classes
= Classes are how we add new types

to Python , ,
a list: contains
| 2 indexed items
. class name .
id1 1 idS
Point 01 2 3 Classes
: e Point
x (2.0 5165 |1d1 « RGB
e Turtle
Yy 3.0 e Window
a class object:
715.0 contains only
named attributes

Recall: Objects can have Methods

 Method: function tied to object

= Function call:
<function-name>(<arguments>)

" Method call:
<object-variable>.<function-call>

= Use of a method 1s a method call

o Example: p.distanceTo(q)

= Both D and q act as arguments
* Very much like distanceTo(p, q)

jqpr P4
Point

x|2.0

y|3.0

z|5.0

Machinery vs. use of machinery

e Classes in Python provide some very simple
machinery, and very few constraints on how you
use it.

e Learning to program with classes in Python
means learning two things:

1. how the machinery works (this lecture)

2. some ways to use the machinery effectively (next
lecture)

keyword class
indicates a
class definition

Goes 1nside a

The Class Definition module, just

like a function

docstring, just \>‘>u "mO]999 SpGClﬁC&thH" n

like a function
definition

to define
methods

to define
variables

N\

gclass <class-name>(object):4 don’t forget the colon!

. definition. |

more on this later

/<functi0n definitions>

<assignment statements>

7

class Example(object):
"""The simplest possible class."
pass

...but not often used

<any other statements also allowed>

Instances and attributes

You can create instances of the class:

e = Example() % a “constructor expression” {42
c| 1
= Creates a new, empty object id2
and access attributes of the class: Example

Exa.mple.a =29 not the way we normally create
print Example. a class attributes! ...more later

= Writing to one creates a new attribute in the class

and access attributes of an instance:

e.b =42 not the way we normally create
print e.b instance attributes! ...more later

= Rule: look first in the instance, then the class

= Writing to one creates a new attribute in the instance

and that’s pretty much it!

Populating a class with methods

Everything class Example2(object):
defined in the """A class that defines some things."""

class definition
creates attributes # This is a class variable. A variable .that lives in a class is
£ the cl g = 20 a class variable.
of the class.

This is a method that

writes to an instance variable. A function that lives in a
a N def set_b(self, x): class defines a method.
Every method has a 3

. self.b =x
special first parameter
self that receives a
reference to the
instance the method

This is a method that reads
from a class variable and an

lled # instance variable.
(e on) def f(self):

return self.a * self.b

This assignment will create
an instance variable.

Method calls

Given class definition from previous slide: set_b:1

e = ExampleR() self | id2 X | 42

= constructor expression assigned to e

= creates a new instance, stores ID in e

f:1
e.set_b(42)
= method call has object + one argument self | id2
= turns into function call with 2 arguments
= value of e passed to self; 42 passed to x
= assignment to self.b creates instance var. id2 e| id2
print e.f() Example2

= method call has object + no arguments
= turns into function call with 1 arguments -29
= value of e passed to self

= attribute references find self.a in class,
self.b in instance

Initializing instances

e Instances are initially empty.

e Usually we want to immediately
add some instance variables.

* To make this easy, Python will
automatically call a method
named __init__ (if you declared
one) right after creating an
object, before the constructor
call returns.

class Worker(object):
"""An instance is a worker in a
certain organization.
Instances have these variables:
Iname [string]: Last name
ssn [int]: Social security
boss [Worker]: Immediate boss

mnmn .
gives access to the

instance being initialized

def init_ (self, Iname, ssn, boss):
self.lname = Iname

note two underscores | gelf.esn = 8sn

self.boss = boss

this statement creates a new Worker
instance, calls __init__ to set it up,
and stores the name into w.

k

. w = Worker("Obama", 1234, None)

:

Aside: The value None

e The boss field 1s a problem. id21
" boss i1s supposed to refer to varl | id21 —> Point
a Worker object
= But some workers might not X [2.2
have a boss var2 | id22 y |5.4

= Maybe not assigned yet,

maybe the buck stops there. 2 6.7
e Solution: use value None .
= None: Lack of (folder) name Lip?-
: : Point
= Will reassign the field later! ~ Var3 INETE o
* Be careful with None variables x|3.5
" var3.x gives error! y | 2.0
= There is no name in var3
z|0.0

= Which Point to use?

Evaluating a Constructor Expression

Worker('Obama/', 1234, None)

. Create a new object (folder) that
1S an 1nstance of the class

= Instance is initially empty

. Call the method init

(if 1t exists)
= Pass folder ID to self

= Pass other arguments in order

. Returns the object (folder) name
as final value of expression

id32

Iname
ssn

boss

Worker

Obama

1234

None

Making Arguments Optional

* We can assign default values

to

init_ arguments

= Write as assignments to
parameters in definition

= Parameters with default
values are optional

 Examples:

p = Point()

p = Point(1,8,3)
p = Point(1,2)

p = Point(y=3)
p = Point(1,z=R)

(0,0,0)
(1,2,3)
(1,2,0)
(0,3,0)
(1,0,2)

class Point(object):
"""Tnstances are points in &d space
X [float]: x coord
y [float]: y coord
z [float]: z coord""

def _ init_ (self, x=0, y=0, z=0):
self.x = float(x)
self.y = float(y)
self.z = float(z)

Making Arguments Optional

* We can assign default values class Point(object):
to __init_ arguments """Tnstances are points in 3d space

x [float]: x coord

= Write as assignments to

parameters in definition y [float]: y coord

= Parameters with default z [float]: z coord™"

values are optional def init_ (self, x=0, y=0, z=0):

o Examples: self.x = float(x)
= p = Point() #0000 self.y = float(y)
= p = Point(Assigns 1n order self.z = float(z)

p = Point(1,8) | Use parameter name |-
p= Point(y= 7 when out of order

TT \V,U,V/
p= Point(l,z=2){ Can mix two }

approaches

What does str() do on class objects?

Does NOT display contents
>>>p = Point(1,2,3)
>>> str(p)
'<Point object at 0x1007a90>’

To display contents, you must
implement a special method
called __str

With the defns. on these slides:

print Point(3,4,5)
produces the output:
(8.0,4.0,5.0)

class Point(object):

"""Tnstances are points in 4d space""”

def _ str_ (self):
"""Returns: string with contents""
return ('(' + self.x +''+
selfy +''+
self.z +")")

Important!

YES NO
class Point(object): class Point:
"""Instances are 38D points """Instances are 38D points
X [float]: x coord X [float]: x coord
y [float]: y coord y [float]: y coord
z [float]: z coord""" z [float]: z coord"""

3.0-Style Classes “Classic” Classes
Well-designed No reason to use these

