
Lecture	  15:	  3/12/13	  

CS1110	  Spring	  2013:	  Defining	  and	  Using	  
Classes	   1	  

Recall: Classes are Types for Objects	


•  Objects must have types	

§  Some types are built in (float, int, file, list, …)	

§  Other types are defined by classes	

§  Classes are how we add new types ���

to Python	


Classes	

 •  Point���
 •  RGB	

 •  Turtle	

 •  Window	


Types	


 •  int���
 •  float	

 •  bool	

 •  str	


Point	


x 2.0 

y 3.0 

z 5.0 

id1	
 id8	


5	
 6	

0 1 

5	

2 

id1	

3 

a list: contains 
indexed items	


a class object: 
contains only 
named attributes	


class name	


Machinery vs. use of machinery	


•  Classes in Python provide some very simple 
machinery, and very few constraints on how you 
use it.	


•  Learning to program with classes in Python 
means learning two things:	

1.  how the machinery works (this lecture)	

2.  some ways to use the machinery effectively (next 

lecture)	


The Class Definition	


   class <class-name>(object):

        """Class specification"""

        <function definitions>	


        <assignment statements>	


        <any other statements also allowed>	


Goes inside a 
module, just ���

like a function 
definition.	
keyword class 

indicates a ���
class definition	


more on this later	

docstring, just 
like a function 
definition	


don’t forget the colon!	


to define 
methods	
 …but not often used	


to define 
variables	


class Example(object):
"""The simplest possible class."""
pass

Example	


Instances and attributes	


•  You can create instances of the class:	

e = Example()

§  Creates a new, empty object	


•  and access attributes of the class:	

Example.a = 29
print Example.a

§  Writing to one creates a new attribute in the class	


•  and access attributes of an instance:	

e.b = 42
print e.b

§  Rule: look first in the instance, then the class	

§  Writing to one creates a new attribute in the instance	


•  and that’s pretty much it!	


Example	


b 42 

id2	

id2	
e

not the way we normally create 
instance attributes! …more later	


a	


Example	


29 

a “constructor expression”	


not the way we normally create 
class attributes! …more later	


Populating a class with methods	


class Example2(object):
"""A class that defines some things."""


# This is a class variable.

 a = 29


# This is a method that 
# writes to an instance variable.
def set_b(self, x):
 self.b = x


# This is a method that reads
# from a class variable and an
# instance variable.
def f(self):
 return self.a * self.b






a	

set_b()	

f()	


Example2	


29 

Everything 
defined in the 
class definition 
creates attributes 
of the class.	


A variable that lives in a class is 
a class variable.	


A function that lives in a 
class defines a method.	


Every method has a 
special first parameter 
self that receives a 
reference to the 
instance the method 
was called on.	


This assignment will create 
an instance variable.	


Method calls	

Given class definition from previous slide:	


e = Example2()
§  constructor expression assigned to e
§  creates a new instance, stores ID in e

e.set_b(42)
§  method call has object + one argument	

§  turns into function call with 2 arguments	

§  value of e passed to self; 42 passed to x
§  assignment to self.b creates instance var.	


print e.f()
§  method call has object + no arguments	

§  turns into function call with 1 arguments	

§  value of e passed to self
§  attribute references find self.a in class, 

self.b in instance	


self 	
x	


set_b:1 

id2	
 42	


a	

set_b()	

f()	


Example2	


29 

Example2	


b 42 

id2	
 id2	
e

self 	


f:1 

id2	




Lecture	  15:	  3/12/13	  

CS1110	  Spring	  2013:	  Defining	  and	  Using	  
Classes	   2	  

Initializing instances	


•  Instances are initially empty. 	

•  Usually we want to immediately ���

add some instance variables.	

•  To make this easy, Python will���

automatically call a method���
named __init__ (if you declared���
one) right after creating an ���
object, before the constructor ���
call returns.	


	


class Worker(object):�
    """An instance is a worker in a
    certain organization.
    Instances have these variables:
        lname [string]: Last name�
        ssn [int]: Social security�
        boss [Worker]: Immediate boss
    """

    def __init__(self, lname, ssn, boss):
        self.lname = lname
        self.ssn = ssn
        self.boss = boss

w = Worker("Obama", 1234, None)this statement creates a new Worker 
instance, calls __init__ to set it up, 
and stores the name into w.	


note two underscores	


gives access to the 
instance being initialized	


Aside: The value None!
•  The boss field is a problem.	


§  boss is supposed to refer to ���
a Worker object	


§  But some workers might not 
have a boss	


§  Maybe not assigned yet, 
maybe the buck stops there. 	


•  Solution: use value None
§  None: Lack of (folder) name	

§  Will reassign the field later!	


•  Be careful with None variables	

§  var3.x gives error!	

§  There is no name in var3	

§  Which Point to use?	


id21	
var1	


id22	
var2	


None	
var3	


Point	


x 2.2 

y 5.4 

z 6.7 

id21	


Point	


x 3.5 

y –2.0 

z 0.0 

id22	


Evaluating a Constructor Expression	

Worker('Obama', 1234, None)

1.  Create a new object (folder) that 
is an instance of the class	

§  Instance is initially empty	


2.  Call the method __init__ �
(if it exists)	

§  Pass folder ID to self	

§  Pass other arguments in order	


3.  Returns the object (folder) name 
as final value of expression	


Worker	


ssn 1234 

id32	


lname Obama 

boss None 

Making Arguments Optional	


•  We can assign default values 
to __init__ arguments	

§  Write as assignments to 

parameters in definition	

§  Parameters with default 

values are optional	

•  Examples:	


§  p = Point()             # (0,0,0)
§  p = Point(1,2,3)     # (1,2,3)
§  p = Point(1,2)        # (1,2,0)
§  p = Point(y=3)       # (0,3,0)
§  p = Point(1,z=2)    # (1,0,2)

class Point(object):	

     """Instances are points in 3d space
     x [float]: x coord
     y [float]: y coord
     z [float]: z coord"""

     def __init__(self, x=0, y=0, z=0):
         self.x = float(x)
         self.y = float(y)
         self.z = float(z)
     …

What does str() do on class objects?	


•  Does NOT display contents	

>>> p = Point(1,2,3)
>>> str(p)
'<Point object at 0x1007a90>’

•  To display contents, you must 
implement a special method 
called __str__	


•  With the defns. on these slides:	

print Point(3,4,5)

produces the output:	

(3.0,4.0,5.0)

class Point(object):	

     """Instances are points in 3d space""”
     …
     def __str__(self):
         """Returns: string with contents"""
         return ('(' + self.x + ',' + 
                            self.y + ',' +
                            self.z + ')')

Important!	


YES	


  class Point(object):
      """Instances are 3D points
      x [float]: x coord
      y [float]: y coord
      z [float]: z coord"""


      …

NO	


class Point:
      """Instances are 3D points
      x [float]: x coord
      y [float]: y coord
      z [float]: z coord"""


      …

“Classic” Classes	

No reason to use these	


3.0-Style Classes	

Well-designed	



