
Lecture	
 15:	
 3/12/13	

CS1110	
 Spring	
 2013:	
 Defining	
 and	
 Using	

Classes	
 1	

Recall: Classes are Types for Objects	

•  Objects must have types	

§  Some types are built in (float, int, file, list, …)	

§  Other types are defined by classes	

§  Classes are how we add new types ���

to Python	

Classes	

 • Point���
 • RGB	

 • Turtle	

 • Window	

Types	

 • int���
 • float	

 • bool	

 • str	

Point	

x 2.0

y 3.0

z 5.0

id1	

 id8	

5	

 6	

0 1

5	

2

id1	

3

a list: contains
indexed items	

a class object:
contains only
named attributes	

class name	

Machinery vs. use of machinery	

•  Classes in Python provide some very simple
machinery, and very few constraints on how you
use it.	

•  Learning to program with classes in Python
means learning two things:	

1.  how the machinery works (this lecture)	

2.  some ways to use the machinery effectively (next

lecture)	

The Class Definition	

 class <class-name>(object):

 """Class specification"""

 <function definitions>	

 <assignment statements>	

 <any other statements also allowed>	

Goes inside a
module, just ���

like a function
definition.	

keyword class

indicates a ���
class definition	

more on this later	

docstring, just
like a function
definition	

don’t forget the colon!	

to define
methods	

 …but not often used	

to define
variables	

class Example(object):

"""The simplest possible class."""

pass

Example	

Instances and attributes	

•  You can create instances of the class:	

e = Example()

§  Creates a new, empty object	

•  and access attributes of the class:	

Example.a = 29

print Example.a

§  Writing to one creates a new attribute in the class	

•  and access attributes of an instance:	

e.b = 42

print e.b

§  Rule: look first in the instance, then the class	

§  Writing to one creates a new attribute in the instance	

•  and that’s pretty much it!	

Example	

b 42

id2	

id2	

e

not the way we normally create
instance attributes! …more later	

a	

Example	

29

a “constructor expression”	

not the way we normally create
class attributes! …more later	

Populating a class with methods	

class Example2(object):

"""A class that defines some things."""

This is a class variable.

a = 29

This is a method that

writes to an instance variable.

def set_b(self, x):

self.b = x

This is a method that reads

from a class variable and an

instance variable.

def f(self):

return self.a * self.b

a	

set_b()	

f()	

Example2	

29

Everything
defined in the
class definition
creates attributes
of the class.	

A variable that lives in a class is
a class variable.	

A function that lives in a
class defines a method.	

Every method has a
special first parameter
self that receives a
reference to the
instance the method
was called on.	

This assignment will create
an instance variable.	

Method calls	

Given class definition from previous slide:	

e = Example2()

§  constructor expression assigned to e

§  creates a new instance, stores ID in e

e.set_b(42)

§  method call has object + one argument	

§  turns into function call with 2 arguments	

§  value of e passed to self; 42 passed to x

§  assignment to self.b creates instance var.	

print e.f()

§  method call has object + no arguments	

§  turns into function call with 1 arguments	

§  value of e passed to self

§  attribute references find self.a in class,

self.b in instance	

self 	

x	

set_b:1

id2	

 42	

a	

set_b()	

f()	

Example2	

29

Example2	

b 42

id2	

 id2	

e

self 	

f:1

id2	

Lecture	
 15:	
 3/12/13	

CS1110	
 Spring	
 2013:	
 Defining	
 and	
 Using	

Classes	
 2	

Initializing instances	

•  Instances are initially empty. 	

•  Usually we want to immediately ���

add some instance variables.	

•  To make this easy, Python will���

automatically call a method���
named __init__ (if you declared���
one) right after creating an ���
object, before the constructor ���
call returns.	

	

class Worker(object):�
 """An instance is a worker in a

 certain organization.

 Instances have these variables:

 lname [string]: Last name�
 ssn [int]: Social security�
 boss [Worker]: Immediate boss

 """

 def __init__(self, lname, ssn, boss):

 self.lname = lname

 self.ssn = ssn

 self.boss = boss

w = Worker("Obama", 1234, None)
this statement creates a new Worker
instance, calls __init__ to set it up,
and stores the name into w.	

note two underscores	

gives access to the
instance being initialized	

Aside: The value None!
•  The boss field is a problem.	

§  boss is supposed to refer to ���
a Worker object	

§  But some workers might not
have a boss	

§  Maybe not assigned yet,
maybe the buck stops there. 	

•  Solution: use value None

§  None: Lack of (folder) name	

§  Will reassign the field later!	

•  Be careful with None variables	

§  var3.x gives error!	

§  There is no name in var3	

§  Which Point to use?	

id21	

var1	

id22	

var2	

None	

var3	

Point	

x 2.2

y 5.4

z 6.7

id21	

Point	

x 3.5

y –2.0

z 0.0

id22	

Evaluating a Constructor Expression	

Worker('Obama', 1234, None)

1.  Create a new object (folder) that
is an instance of the class	

§  Instance is initially empty	

2.  Call the method __init__ �
(if it exists)	

§  Pass folder ID to self	

§  Pass other arguments in order	

3.  Returns the object (folder) name
as final value of expression	

Worker	

ssn 1234

id32	

lname Obama

boss None

Making Arguments Optional	

•  We can assign default values
to __init__ arguments	

§  Write as assignments to

parameters in definition	

§  Parameters with default

values are optional	

•  Examples:	

§  p = Point() # (0,0,0)

§  p = Point(1,2,3) # (1,2,3)

§  p = Point(1,2) # (1,2,0)

§  p = Point(y=3) # (0,3,0)

§  p = Point(1,z=2) # (1,0,2)

class Point(object):	

 """Instances are points in 3d space

 x [float]: x coord

 y [float]: y coord

 z [float]: z coord"""

 def __init__(self, x=0, y=0, z=0):

 self.x = float(x)

 self.y = float(y)

 self.z = float(z)

 …

What does str() do on class objects?	

•  Does NOT display contents	

>>> p = Point(1,2,3)

>>> str(p)

'<Point object at 0x1007a90>’

•  To display contents, you must
implement a special method
called __str__	

•  With the defns. on these slides:	

print Point(3,4,5)

produces the output:	

(3.0,4.0,5.0)

class Point(object):	

 """Instances are points in 3d space""”

 …

 def __str__(self):

 """Returns: string with contents"""

 return ('(' + self.x + ',' +

 self.y + ',' +

 self.z + ')')

Important!	

YES	

 class Point(object):

 """Instances are 3D points

 x [float]: x coord

 y [float]: y coord

 z [float]: z coord"""

 …

NO	

class Point:

 """Instances are 3D points

 x [float]: x coord

 y [float]: y coord

 z [float]: z coord"""

 …

“Classic” Classes	

No reason to use these	

3.0-Style Classes	

Well-designed	

