
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 12: Recursion, again	

CS1110

Prelim preparation	

Study suggestion: be able to re-do labs 2-5 and A1, A2,
A3 on paper and without much hesitation.	

	

For help on A2: try using the Online Python Tutor.	

	

Fall 2012 prelim 1 and review material is/will be
posted on the exams page.	

Organization suggestion	

Get a three-ring binder and a 3-hole punch. Use these
oldie-but-goodie technologies to store your CS1110
handouts 'n stuff. 	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Many recursion examples on the Lectures page	

These were authored by Prof. Walker White last semester.	

	

•  comments in braces are assertions: conditions assumed to hold

if that line is reached. Example: 	

 # {s is empty}

•  We are not currently emphasizing the use of assert statements

to enforce preconditions, but they can be quite useful to catch
bugs involving accidental precondition violation. Example:	

 assert type(s) == str, `s` + ' is not a string'
 (backquotes give unambiguous string representation)	

	

Reminder: our running example	

def num_es(s):
 """Returns: number of ‘e’s in <s>. Precond: <s> a string"""
 # Strategy: break off first character, recur on the rest.
 if s == '': # base case (no recursion): <s> is empty string
 return 0

 # recursive case: process 1st char and rest of string
 # note: s[1:] is '' if len(s) <= 1
 return ((1 if s[0] == 'e' else 0) + num_es(s[1:]))
 	

Let's understand what happens at execution.	

1

2

3

import lec12
print lec12.num_es('ae')

code with function call	

s

	

	

	

num_es:1 3

'e'	

s

	

	

	

num_es:1 3

'ae'	

Execution in "typical" recursion case	

def num_es(s):
 if s == '':
 return 0
 return ((1 if s[0] == 'e' else 0) + num_es(s[1:]))
 	

1
2
3

inside module lec 12	

import creates the function objects
that are defined in lec12, like
num_es, so we can call them.	

s

	

	

	

num_es:1 2

''	

✗	

✗	

✗ 	

✗	

print bad('ae')

code with function call	

What if we didn't recur on a "smaller" value?	

def bad(s):
 if s == ''
 return 0
 return ((1 if s[0] == 'e' else 0) + bad(s))
 	

1
2
3

Hypothetical function definition	

s

	

	

	

bad:1 3

'ae'	

	

	

	

bad:1 3

'ae'	

s

	

	

	

bad:1 3

'ae'	

...	

✗	

✗	

✗ 	

 [lots of copies of the same message]	

RuntimeError: maximum recursion depth exceeded	

print oops('ae')

code with function call	

What if we didn't have a base case (version I)?	

def oops(s):
 return ((1 if s[0] == 'e' else 0) + oops (s[1:]))
 	

1

hypothetical function definition	

s

	

	

	

oops:1

'ae'	

s

	

	

	

oops:1

'e'	

s

	

	

	

oops:1

''	

...	

 error (index error) when splitting not applicable	

print oops('ae')

code with function call	

What if we didn't have a base case (version II)?	

def oops(s):
 return ((1 if s[0:1] == 'e' else 0) + oops (s[1:]))
 	

1

hypothetical function definition	

s

	

	

	

oops:1

'ae'	

s

	

	

	

oops:1

'e'	

s

	

	

	

oops:1

''	

s

	

	

	

oops:1

''	

s

	

	

	

oops:1

''	

...	

 [lots of copies of the same message]	

RuntimeError: maximum recursion depth exceeded	

Alternate implementation	

def num_es2(s):
 """Returns: number of ‘e’s in <s>. Precond: <s> a string"""
 # Strategy: break into two smaller strings, recur on both.

 # base case: cannot break into two smaller strings

 # recursive case: choose a random breakpoint
 i = random integer between 1 and len(s)-1, inclusive
 # return: num of e's from 0 to up to but not including
 # i, plus num of e's from i to the end of the string	

(A) if s == '':	

 ...	

(B) if len(s) == 1:	

 ...	

(C) if len(s) <= 1:	

 ...	

(D) if len(s) <= 2:	

 ...	

 Implement the recursive case (leave base case for later)	

Alternate implementation	

def num_es2(s):
 """Returns: number of ‘e’s in <s>. Precond: <s> a string"""
 # Strategy: break into two smaller strings, recur on both.

 # base case: cannot break into two smaller strings
 if (len(s) <= 1):

 return (1 if s == 'e' else 0)

 # recursive case: choose a random breakpoint
 i = random.randrange(1:len(s) – 1)
 return num_es2(s[:i]) + num_es2(s[i:])	

How to Think About Recursive Functions	

1.  Have a precise function specification.	

  Test cases generally handy here	

2.  Recursive case(s): 	

  Verify recursive cases with the specification	

3.  Reduction: 	

  Arguments of calls must somehow get “smaller”, so each

recursive call gets closer to a base case	

4.  Base case(s): 	

  When the recursive case doesn't apply	

  When the argument values are as "small" as possible 	

  When the answer is determined with little calculation.	

the same	

Example: Palindromes	

has to be a palindrome	

Practical application: RNA secondary structure: 	

loops form because of "antepalindromes" (G/C and A/U) 	

•  String with ≥ 2 characters is a palindrome if:	

  its first and last characters are the same, and	

  the rest of the characters form a palindrome	

AMANAPLANACANALPANAMA	

•  All strings with fewer than 2 characters are
palindromes	

Example: Palindromes	

def ispalindrome(s): !
 """Returns: True if string s is a palindrome, False otherwise"""�

 if len(s) < 2:�
 return True

 # can check 1st against last character, then interior

(see posted code for solutions)	

Example: Reversing a String	

•  Precise Specification:	

  Returns: reverse of s	

•  Solving with recursion	

  Suppose we can reverse ���

a smaller string���
(e.g., one fewer
character)	

  Can we use that solution
to reverse whole string?	

H	
 e	
 l	
 l	
 o	
 !	

!	
 o	
 l	
 l	
 e	
 H	

e	
 l	
 l	
 o	
 !	

!	
 o	
 l	
 l	
 e	

H	

Example: Reversing a String	

def reverse(s):
 """Returns: reverse of s

 Precondition: s a string"""
 # {s is empty}
 if s == '':
 return s

 # { s at least one char }
 # (reverse of s[1:])+s[0]
 return reverse(s[1:])+s[0]	

def reverse2(s):
 """Returns: reverse of s

 Precondition: s a string"""
 # {s has at most one char}

 # { s has at least two chars}
 # last char + reverse of s up to it
	

Can you fill in the missing lines?	

(see posted code for solutions)	

