CS1110

Lecture 12: Recursion, again

Prelim preparation
Study suggestion: be able to re-do labs 2-5 and A1, A2,
A3 on paper and without much hesitation.

For help on A2: try using the Online Python Tutor.

Fall 2012 prelim 1 and review material 1s/will be
osted on the exams page.

~

4 Organization suggestion
Get a three-ring binder and a 3-hole punch. Use these
oldie-but-goodie technologies to store your CS1110
_handouts 'n stuff. .

Slides by D. Gries, L. Lee, S. Marschner, W. White

Many recursion examples on the Lectures page
These were authored by Prof. Walker White last semester.

e comments in braces are assertions: conditions assumed to hold
if that line is reached. Example:
{s is empty}

* We are not currently emphasizing the use of assert statements
to enforce preconditions, but they can be quite useful to catch
bugs involving accidental precondition violation. Example:

assert type(s) ==str, s +'isnot a string'
(backquotes give unambiguous string representation) /

Slides by D. Gries, L. Lee, S. Marschner, W. White

Reminder: our running example

def num_es(s):

"""Returns: number of ‘e’s in <s>. Precond: <s> a string™"
Strategy: break off first character, recur on the rest.

1| ifs==": # base case (no recursion): <s> is empty string
2 returnO

recursive case: process 1% char and rest of string
[1:] S,
return ((1 if s[0] =="e' else 0) + num_es(s[1:]))

Let's understand what happens at execution.

Execution in "typical" recursion case

inside module lec 12

def num_es(s):
1 ifg="
2 return O
3 return ((1 if s[0] =="e' else 0) + num_es(s[1:]))

code with function call

import lec1?
print lec12.num_es('ae')

import creates the function objects
that are defined in lec12, like
num_es, so we can call them.

num_es: ¥ 3

S 1.

ac

num_es:’¥ 3

\

What if we didn't recur on a "smaller" value?

Hypothetical function definition bad:X* 3
def bad(s): 'ae'
1 ifg=="

2 return O

3 return ((1 if s[0] =="e' else 0) + bad(s))

bad:k 3
code with function call s |,
ae
print bad('ae')
bad:%k 3
[lots of copies of the same message] S | 190

RuntimeError: maximum recursion depth exceeded

What if we didn't have a base case (version I)?

hypothetical function definition oops: 1
S | |
def oops(s): ac
1 return ((1 if s[0] =="e' else 0) + oops (S[1:])) 0ops:1
S |e|
code with function call oops:1
S "
print oops(‘ae')

error (index error) when splitting not applicable

What if we didn't have a base case (version I1)?

hypothetical function definition SRy
S |ae!
def oops(s):
1 return ((1 if s[0:1] =="e" else 0) + oops (s[1:])) oops:1
S |e!
code with function call oops:1
S "
print oops(‘ae')
oops:1
S "
[lots of copies of the same message] oops:1
RuntimeError: maximum recursion depth exceeded B

Alternate implementation

def num_es’(s):
"""Returns: number of ‘e’s in <s>. Precond: <s> a string™"
Strategy: break into two smaller strings, recur on both.

base case: cannot break into two smaller strings

(A)ifs ==":

(B) if len(s) == 1:

(C) if len(s) <= 1:

(D) 1f len(s) <= 2:

recursive case: choose a random breakpoint

i = random integer between 1 and len(s)-1, inclusive
return: num of e's from O to up to but not including
i, plus num of e's from i to the end of the string

Implement the recursive case (leave base case for later)

Alternate implementation

def num_es2(s):
"""Returns: number of ‘e’s in <s>. Precond: <s> a string™"
Strategy: break into two smaller strings, recur on both.

base case: cannot break into two smaller strings
if (len(s) <= 1):
return (1 if s =="'¢' else 0)

recursive case: choose a random breakpoint
i = random.randrange(l:len(s) — 1)
return num_es2(s[:i])) + num_esd(s[i:])

How to Think About Recursive Functions

1. Have a precise function specification.
= Test cases generally handy here

2. Recursive case(s):
= Verily recursive cases with the specification

3. Reduction:

= Arguments of calls must somehow get “smaller”, so each
recursive call gets closer to a base case
4. Base case(s):
* When the recursive case doesn't apply

* When the argument values are as "small" as possible
= When the answer 1s determined with little calculation.

Example: Palindromes

e String with = 2 characters 1s a palindrome 1f:
= its first and last characters are the same, and
= the rest of the characters form a palindrome

the same
AMANAPLANACANALPANAM

has to be a palindrome
e All strings with fewer than 2 characters are
palindromes

Practical application: RNA secondary structure:
loops form because of "antepalindromes” (G/C and A/U)

Example: Palindromes

(see posted code for solutions)

def ispalindrome(s):
"""Returns: True if string s is a palindrome, False otherwise""

can check 1% against last character, then interior

Example: Reversing a String

* Precise Specification: .

= Returns: reverse of s

* Solving with recursion ;

= Suppose we can reverse
a smaller string
(e.g., one fewer =00 ——-—m—m—m—m—m——mm—————-
character)

= Can we use that solution

to reverse whole string? ;

Example: Reversing a String

def reverse(s): def reversed(s):
"""Returns: reverse of s """Returns: reverse of s
Precondition: s a string™" Precondition: s a string™"
{sis empty} # {s has at most one char}
ifs==":
- return s
{ s has at least two chars}
{ s at least one char } # last char + reverse of s up to it
(reverse of s[1:])+s[0]
return reverse(s[1:])+s[0] (see posted code for solutions)

Can you fill in the missing lines?

