CS1110

Lecture 11: Intro to Recursion
/ Prelim preparation/upcoming schedule \
T

This week (Feb 25 -Mar 1)
oday: lecture (recursion) as usual, plus:
* Prelim conflicts (makeup requests) at midnight on CMS
* A3 out today; short, designed to help prepare you for the exam
(Ignore the words "Draft: Assignment Subject to Change".)

Labs today and tomorrow:

 Lab S (lists) due

* pick up your graded A2s — feedback will help you for prelim

* Lab 6 (recursion) out — not optional, but that material 1s not on
the prelim. Due at beginning of lab session after the prelim.

{hursday: lecture (recursion II) as usual /

Slides by D. Gries, L. Lee, S. Marschner, W. White

/ Next week (Mar 4 — Mar 8) \

Monday Mar 4: A3 due

Tuesday Mar 5: review session instead of regular lecture

Labs Mar 5/6:

* pick up your graded A2s (if you haven't already)

* No new lab activity, optional attendance: treat as office hours, or
opportunity to work more on Lab 6 (due in lab the week after)

Thursday Mar 7:

* "lecture" = office hours with profs (location TBA)
* Prelim: 7:30-9pm, 116 Kennedy Hall/Call Auditorium J

Slides by D. Gries, L. Lee, S. Marschner, W. White

a : N

We provided feedback as written comments, not grades™.

So:

* Please pick up your A2 in lab this week; the A2 material will
be on the prelim. (If it's missing, your partner might have it.)

* Make sure you can reproduce every single bit of the solutions
on your own exactly.**

*Everyone who submitted received the same "participation" grade, which

enabled us to finish the grading faster.
**Except we don't care whether you wrote "end" to indicate the end of
execution or not.

A2 solutions

c= \m\n@, 2)

c |1

d = miny,)

Q C X
=IN||=

roJr_x(g)

i

©

S
ﬁ

~

To get your questions answered in lab faster:

New in-lab collaboration policy

We (now) encourage you to talk to your table-mate or other
students in lab to solve the problems you are given. You may
look at each other's lab code while in lab.

&

/

Slides by D. Gries, L. Lee, S. Marschner, W. White

4 N

"Submission petitions'": new policy

Need an extension/missed a submission deadline? Please email
head TA Qin Jia (qj34@cornell.edu), not the 1nstructor(s).

(You can optionally cc: (both) of us profs on such email, but coordination will
be handled by Qin. We (profs Marschner and Lee) need to devote more time
to content creation and helping students with questions.)

& /

Slides by D. Gries, L. Lee, S. Marschner, W. White

Nested Lists (appear in A3)

* Lists can hold any objects

* Lists are objects
 Therefore lists can hold other lists!

'j', k'] x[1] x[R1] | x[a)e]

3, 6] | . S
i I 1DI
A, 'B!,b] x =7, [1, ', ['A", 'B', [3, 611, 51

[, a, ¢, B] NN
x[0] x[1][1] x[R][0] x[R][R][1]

-J

M O O ®

Application: Linguistic structure

From (IMDB transcription of) trailer for Wreck-It Ralph:

King Candy: (puts on glasses)

You wouldn't hit a guy with glasses, would you?

(Ralph smacks the King with the glasses)

King Candy: You hit a guy, with glasses. Well played.

Linguistic chunks as nested lists

['hat', 'a', 'guy’, 'with', 'glasses']

modifies what?

['hat', ['a', ['guy', ['with', 'glasses']]]]

['hat', ['a', 'guy'], ['with', 'glasses']]

Let's take "list embeddedness" as indication of structure

Linguistic chunks as nested lists

def embed(input):
"""Returns: depth of embedding in input.
Precondition: input is a list of strings or a string™™
'hit', 'a', 'guy’, 'with', 'glasses']: 1
'hit!, ['a), 'guy’], ['with', 'glasses']]: &
'hit', ['a', 'guy’, ['with', 'glasses']]]: 3

['the’, [['red’, 'house'], 'and’, 'barn’, ['that', ‘jack’,
'built']], 'was', 'razed']: 8
'a": 0

How might you implement this?

def embed(input):
"""Returns: depth of embedding in input.
Precondition: input is a list of strings or a string"""

'hit', 'a’, 'guy’, 'with', 'glasses']: 1

'hit', ['a’, 'Suy’], ['with', 'Slasses']]: &

'hit', ['a), 'guy’, ['with', 'glasses')]]: 3

'the', [['red’, 'house'], 'and’, 'barn’, ['that', jack’, 'built']], 'was’, 'razed']: 3
'a: 0

(A) use len(input)

(B) convert input to a string si, use si.count('[")

(C) like (B), but go through si, counting '|' against '[' to figure
out the number of "open brackets"

(D) get the max embedding of the items in input, then add 1

A one*-liner!

def embed(ell):
"""Returns: depth of embedding in input.
Precondition: input is a list of strings or a string™"

return (O if type(input) != list
else 1 + max(map(embed, input)))

the function embed uses itself

Any function can call itself; the important part 1s
ensuring termination and correctness.

* For sufficiently small font. It's two lines here for lecture readability.

Simpler example:

Recursive, restricted version of count

def num_es(s):
"""Returns: number of ‘e’s in <s>. Precond: <s> g string"""
if s ==": # case: s is empty string
| return O
case: <s> has at least one char
startcount = (1 if s[0] == "e' else 0)
return (startcount +
num_es(s[1:])) # s[l:]is "if len(g) ==

Indeed, if s has at least one character, the number of 'e's in
s 1S the number of 'e's 1n s[0] + the number of 'e's in s[1:].

How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):

* When the argument values are as "small" as possible
* When the answer is determined with little calculation.
3. Recursive case(s):

* Verily recursive cases with the specification

4. Termination:

= Arguments of calls must somehow get “smaller”, so each
recursive call gets closer to a base case

Understanding the Counting Example

e Step 1: Have a precise specification
def num_es(s):

"""Returns: number of ‘¢’s in <s>. Precond: <s> a string"""

case: s is empty string
if s ==".
- return O

Base case

“Write” your return
statement using the
specification

case: s has at least one char
((# return # of ‘e’s in s[0]+# of ‘¢’s in s[1:])
return (1 if s[0] == 'e' else 0) + num_es(s[1:])

e Step 2: Check the base cases

Recursive case

= When s is the empty string, O 1s returned. Good.

Understanding the String Example

e Step 3: Recursive calls make progress toward termination

def num_es(s): «—— inputis s
"""Returns: # of ‘e’s in s™"

{s is empty}

if s ==".

new input is s[1:]

. return O
\ argument s[1:] is smaller than original s, so
\there is progress toward base case (")

{ s at least one char }
return # of ‘e’s in s[0]+# of ‘e’sM
return (1 if s[0] == 'e' else 0) + num_es(s[1:])

e Step 4: Recursive case 1s correct

= Just check the specification

Example: Remove Blanks from a String

def deblank(s): e Check the four points:
"""Returns: s with blanks removed"™" : : ,
g = 1. Precise specification?
" return s 2. Base case: correct?
3. Recursive case: progress
case: s is not empty toward termination?
if s[0] in string.whitespace: 4. Recursive case: correct?

‘ return deblank(s[1:])

Expression: x in thelist
case: s not empty and s[O] not blank P : :
returns True if X 1s a
return (s[0] +

deblank(s[1:D) member of. li§t Fhelist
(and False 1f it is not)

Many more examples posted on the lectures page
(should be handy for lab).

Those examples use assert statements;
not our conceptual focus for now.

