CS1110 Lecture 11 (recursion): 2/26/13

CS1110

Lecture 11: Intro to Recursion

7/ Prelim preparation/upcoming schedule N
This week (Feb 25 — Mar 1)
Today: lecture (recursion) as usual, plus:

¢ Prelim conflicts (makeup requests) at midnight on CMS
* A3 out today; short, designed to help prepare you for the exam

Labs today and tomorrow:

* Lab 5 (lists) due

* pick up your graded A2s — feedback will help you for prelim

« Lab 6 (recursion) out — not optional, but that material is not on
the prelim. Due at beginning of lab session after the prelim.

@rsday: lecture (recursion II) as usual J

Slides by D. Gries, L. Lee, S. Marschner, W. White

4 - )
We provided feedback as written comments, not grades*.
So:
* Please pick up your A2 in lab this week; the A2 material will
be on the prelim. (If it's missing, your partner might have it.)

e Make sure you can reproduce every single bit of the solutions
on your own exactly.**

*Everyone who submitted received the same "participation" grade, which
enabled us to finish the grading faster.
**Except we don't care whether you wrote "end" to indicate the end of J

execution or not.

Slides by D. Gries, L. Lee, S. Marschner, W. White

C 0

New In-Lab Collaboration Policy
To get your questions answered in lab faster:
‘We (now) encourage you to talk to your table-mate or other

students in lab to solve the problems you are given. You may
look at each other's lab code while in lab.

- /

Slides by D. Gries, L. Lee, S. Marschner, W. White

Next week (Mar 4 — Mar 8) \

Monday Mar 4: A3 due
Tuesday Mar 5: review session instead of regular lecture

Labs Mar 5/6:

* pick up your graded A2s (if you haven't already)

* No new lab activity, optional attendance: treat as office hours, or
opportunity to work more on Lab 6 (due in lab the week after)

Thursday Mar 7:
* "lecture" = office hours with profs (location TBA)
* Prelim: 7:30-9pm, 116 Kennedy Hall/Call Auditorium /

Slides by D. Gries, L. Lee, S. Marschner, W. White

A2 solutions

d= s 0

C 0

"Submission petitions": new policy

Need an extension/missed a submission deadline? Please email
head TA Qin Jia (qj34@cornell.edu), not the instructor(s).

(You can cc: (both) of us profs on such email, but coordination will be
handled by Qin. We (profs Marschner and Lee) need to devote more time to
content creation and helping students with questions.)

- /

Slides by D. Gries, L. Lee, S. Marschner, W. White




CS1110 Lecture 11 (recursion): 2/26/13

Nested Lists (appear in A3)

e Lists can hold any objects
e Lists are objects
e Therefore lists can hold other lists!

a=[j,%
= EE
¢=[A, B, bl x=1[7[4, K], [A', 'B", [3, 6], 5]

x=1[72,c,8]

How to Think About Recursive Functions

A Recursive Function

def num_es(s):
"""Returns: number of ‘e’s in s. Precond: s a string""
if s==": # case: s is empty string
| return 0

# case: <s> has at least one char
return ((1 if s[0] == "¢’
else 0) +
num_es(s[1:]))

Indeed, if s has at least one character, the number of 'e's in
s is the number of 'e's in s[0] + the number of 'e's in s[1:].

1. Have a precise function specification.
2. Base case(s):
= When the argument values are as "small" as possible
= When the answer is determined with little calculation.
3. Recursive case(s):
= Verify recursive cases with the specification
4. Termination:

= Arguments of calls must somehow get “smaller”, so each
recursive call gets closer to a base case

Understanding the String Example

Understanding the String Example

* Step 3: Recursive calls make progress toward termination
def num_es(s): (—‘ parameter s

* Step 1: Have a precise specification
def num_es(s):
"""Returns: number of ‘e’s in s. Precond: s a string""

# case: s is empty string

ifg==":

| return O

“Write” your return
statement using the
specification

# case: s has at least one char

(G return # of ‘e’s in s[0]+# of ‘e’s in s[1:] ) TR ET

return (1 if s[0] == 'e' else 0) + num_es(s[1:])

e Step 2: Check the base case
= When s is the empty string, O is returned. Good.

Example: Remove Blanks from a String

"""Returns: # of ‘e’s in s"""
# {s is empty}
ifs==":

argument s[1:] is smaller than
parameter s, so there is progress

toward reaching base case 0

| return O

# { s at least one char } argument s[1:]

# return # of ‘e’s in s[0]+# of ‘e’s in s[1:]
return (1 if s[0] == 'e' else 0) + num_es(s[1:])

* Step 4: Recursive case is correct
= Just check the specification

def deblank(s): e Check the four points:
"""Returns: s with blanks removed""" . . .
o 1. Precise specification?
| returns 2. Base case: correct?
3. Recursive case: progress
# case: s is not empty toward termination?
if s[0] in string.whitespace: 4. Recursive case: correct?

‘ return deblank(s[1:])

Expression: x in thelist
returns True if X is a
member of list thelist
(and False if it is not)

# case: s not empty and s[0] not blank
return (s[0] +
deblank(s[1:]))




