
CS1110	
 Lecture	
 11	
 (recursion):	
 2/26/13	

1	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 11: Intro to Recursion	

CS1110

	

Prelim preparation/upcoming schedule	

This week (Feb 25 – Mar 1)	

Today: lecture (recursion) as usual, plus:	

•  Prelim conflicts (makeup requests) at midnight on CMS	

•  A3 out today; short, designed to help prepare you for the exam	

	

Labs today and tomorrow:	

•  Lab 5 (lists) due	

•  pick up your graded A2s – feedback will help you for prelim	

•  Lab 6 (recursion) out – not optional, but that material is not on

the prelim. Due at beginning of lab session after the prelim.	

	

Thursday: lecture (recursion II) as usual	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

	

	

Next week (Mar 4 – Mar 8)	

Monday Mar 4: A3 due	

	

Tuesday Mar 5: review session instead of regular lecture	

	

Labs Mar 5/6:	

•  pick up your graded A2s (if you haven't already)	

•  No new lab activity, optional attendance: treat as office hours, or

opportunity to work more on Lab 6 (due in lab the week after)	

	

Thursday Mar 7: 	

•  "lecture" = office hours with profs (location TBA)	

•  Prelim: 7:30-9pm, 116 Kennedy Hall/Call Auditorium	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

A2	

 	

We provided feedback as written comments, not grades*. 	

So:	

•  Please pick up your A2 in lab this week; the A2 material will

be on the prelim. (If it's missing, your partner might have it.)	

•  Make sure you can reproduce every single bit of the solutions

on your own exactly.**	

 	

 *Everyone who submitted received the same "participation" grade, which
enabled us to finish the grading faster. 	

**Except we don't care whether you wrote "end" to indicate the end of
execution or not.	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

A2 solutions

min: 1/ 2/ 4/

xc y

minimum

d
y
x

11 2

1

1.0
2.0
1.0

min: 1/ 2/ 3/ 4/

x y

minimum

Point

2.0

x 1.0
y 2.0 3.0
z 3.0 2.0

q
p

id2
id1

1.0

2.0 1.0

rot_x: 1/ 2/ 3/

q

tmp

id1

2.0

id1

Pointx 4.0
y 5.0
z 6.0

id2

c = min(1, 2)

CS1110 Spring 2013 Assignment 2 solution

d = min(y, x)

rot_x(q)

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

New In-Lab Collaboration Policy	

 	

To get your questions answered in lab faster:	

	

We (now) encourage you to talk to your table-mate or other
students in lab to solve the problems you are given. You may
look at each other's lab code while in lab. 	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

"Submission petitions": new policy	

 	

Need an extension/missed a submission deadline? Please email
head TA Qin Jia (qj34@cornell.edu), not the instructor(s). 	

	

(You can cc: (both) of us profs on such email, but coordination will be
handled by Qin. We (profs Marschner and Lee) need to devote more time to
content creation and helping students with questions.)	

CS1110	
 Lecture	
 11	
 (recursion):	
 2/26/13	

2	

x = [7, ['j', 'k'], ['A', 'B', [3, 6]], 5]

Nested Lists (appear in A3)	

•  Lists can hold any objects	

•  Lists are objects	

•  Therefore lists can hold other lists!	

x[0]
 x[1][1]
 x[2][2][1]
x[2][0]

x[1]
 x[2]
 x[2][2]
a = ['j', 'k']

b = [3, 6]

c = ['A', 'B', b]

x = [7, a, c, 5]

A Recursive Function	

def num_es(s):

 """Returns: number of ‘e’s in s. Precond: s a string"""

if s == '': # case: s is empty string

 return 0

 # case: <s> has at least one char

 return ((1 if s[0] == 'e'

 else 0) +

 num_es(s[1:]))

Indeed, if s has at least one character, the number of 'e's in
s is the number of 'e's in s[0] + the number of 'e's in s[1:].	

How to Think About Recursive Functions	

1.  Have a precise function specification.	

2.  Base case(s): 	

  When the argument values are as "small" as possible 	

  When the answer is determined with little calculation.	

3.  Recursive case(s): 	

  Verify recursive cases with the specification	

4.  Termination: 	

  Arguments of calls must somehow get “smaller”, so each

recursive call gets closer to a base case	

Understanding the String Example	

•  Step 1: Have a precise specification	

 def num_es(s):

 """Returns: number of ‘e’s in s. Precond: s a string"""

 # case: s is empty string

 if s == '':

 return 0

 # case: s has at least one char

 # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]

 return (1 if s[0] == 'e' else 0) + num_es(s[1:])	

•  Step 2: Check the base case	

  When s is the empty string, 0 is returned. Good.	

Recursive case	

Base case	

 “Write” your return
statement using the

specification	

Understanding the String Example	

•  Step 3: Recursive calls make progress toward termination	

 def num_es(s):

 """Returns: # of ‘e’s in s"""

 # {s is empty}

 if s == '':

 return 0

 # { s at least one char }

 # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]

 return (1 if s[0] == 'e' else 0) + num_es(s[1:])	

•  Step 4: Recursive case is correct	

  Just check the specification	

argument s[1:]	

parameter s	

argument s[1:] is smaller than	

parameter s, so there is progress	

toward reaching base case 0	

Example: Remove Blanks from a String	

def deblank(s):

 """Returns: s with blanks removed"""

 if s == '':

 return s

 # case: s is not empty

 if s[0] in string.whitespace:

 return deblank(s[1:])

 # case: s not empty and s[0] not blank

 return (s[0] +�

 deblank(s[1:]))

	

•  Check the four points:	

1.  Precise specification?	

2.  Base case: correct?	

3.  Recursive case: progress

toward termination?	

4.  Recursive case: correct?	

Expression: x in thelist
returns True if x is a
member of list thelist

(and False if it is not)	

