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Lecture 11: Intro to Recursion	


CS1110


	


Prelim preparation/upcoming schedule	



This week (Feb 25 – Mar 1)	


Today: lecture (recursion) as usual, plus:	


•   Prelim conflicts (makeup requests) at midnight on CMS	


•  A3 out today; short, designed to help prepare you for the exam	


	


Labs today and tomorrow:	


•  Lab 5 (lists) due	


•  pick up your graded A2s – feedback will help you for prelim	


•  Lab 6 (recursion) out – not optional, but that material is not on 

the prelim. Due at beginning of lab session after the prelim.	


	


Thursday: lecture (recursion II) as usual	
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Next week (Mar 4 – Mar 8)	


Monday Mar 4: A3 due	


	


Tuesday Mar 5: review session instead of regular lecture	


	


Labs Mar 5/6:	


•  pick up your graded A2s (if you haven't already)	


•  No new lab activity, optional attendance: treat as office hours, or 

opportunity to work more on Lab 6 (due in lab the week after)	


	


Thursday Mar 7: 	


•  "lecture" = office hours with profs (location TBA)	


•  Prelim: 7:30-9pm, 116 Kennedy Hall/Call Auditorium	
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A2	


 	



We provided feedback as written comments, not grades*. 	


So:	


•   Please pick up your A2 in lab this week; the A2 material will 

be on the prelim. (If it's missing, your partner might have it.)	


•  Make sure you can reproduce every single bit of the solutions 

on your own exactly.**	


  	


 *Everyone who submitted received the same  "participation" grade, which 
enabled us to finish the grading faster. 	


**Except we don't care whether you wrote "end" to indicate the end of  
execution  or not.	
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A2 solutions
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CS1110 Spring 2013 Assignment 2 solution

d = min(y, x)
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New In-Lab Collaboration Policy	


 	



To get your questions answered in lab faster:	


	


We (now) encourage you to talk to your table-mate or other 
students in lab to solve the problems you are given.  You may 
look at each other's lab code while in lab. 	
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"Submission petitions": new policy	


 	



Need an extension/missed a submission deadline?  Please email 
head TA Qin Jia (qj34@cornell.edu), not the instructor(s).  	


	


(You can cc: (both) of us profs on such email, but coordination will be 
handled by Qin.  We (profs Marschner and Lee) need to devote more time to 
content creation and helping students with questions.)	
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x = [7, ['j', 'k'], ['A', 'B', [3, 6]], 5]


Nested Lists (appear in A3)	



•  Lists can hold any objects	


•  Lists are objects	


•  Therefore lists can hold other lists!	



x[0]
 x[1][1]
 x[2][2][1]
x[2][0]


x[1]
 x[2]
 x[2][2]
a = ['j', 'k']

b = [3, 6]

c = ['A', 'B', b]

x = [7, a, c, 5]


A Recursive Function	


def num_es(s):

    """Returns: number of ‘e’s in s. Precond: s a string"""



if s == '':  # case: s is empty string

        return 0



    # case: <s> has at least one char 

    return ((1 if s[0] == 'e' 

                    else 0) +  

                 num_es(s[1:]))


Indeed, if s has at least one character, the number of 'e's in 
s is the number of 'e's in s[0] + the number of 'e's in s[1:].	



How to Think About Recursive Functions	



1.  Have a precise function specification.	


2.  Base case(s): 	



  When the argument values are as "small" as possible 	


  When the answer is determined with little calculation.	



3.  Recursive case(s): 	


  Verify recursive cases with the specification	



4.  Termination: 	


  Arguments of calls must somehow get “smaller”, so each 

recursive call gets closer to a base case	



Understanding the String Example	



•  Step 1:  Have a precise specification	


    def num_es(s):

        """Returns: number of ‘e’s in s. Precond: s a string"""

        # case: s is empty string

        if s == '':

            return 0



        # case: s has at least one char

        # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]

        return (1 if s[0] == 'e' else 0) +  num_es(s[1:])	



•  Step 2: Check the base case	


  When s is the empty string, 0 is returned.  Good.	



Recursive case	



Base case	

 “Write” your return 
statement using the 

specification	



Understanding the String Example	



•  Step 3:  Recursive calls make progress toward termination	


    def num_es(s):

        """Returns: # of ‘e’s in s"""

        # {s is empty}

        if s == '':

            return 0



        # { s at least one char }

        # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]

        return (1 if s[0] == 'e' else 0) +  num_es(s[1:])	



•  Step 4: Recursive case is correct	


  Just check the specification	



argument s[1:]	



parameter s	


argument s[1:] is smaller than	


parameter s, so there is progress	


toward reaching base case 0	



Example: Remove Blanks from a String	


def deblank(s):

    """Returns: s with blanks removed"""

    if s == '':

        return s



    # case: s is not empty

    if s[0] in string.whitespace:

        return deblank(s[1:])



    # case: s not empty and s[0] not blank

    return (s[0] +�

          deblank(s[1:]))

	



•  Check the four points:	


1.  Precise specification?	


2.  Base case: correct?	


3.  Recursive case: progress 

toward termination?	


4.  Recursive case: correct?	



Expression: x in thelist 
returns True if x is a 
member of list thelist

(and False if it is not)	




