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Lecture 11: Intro to Recursion	

CS1110

	

Prelim preparation/upcoming schedule	


This week (Feb 25 – Mar 1)	

Today: lecture (recursion) as usual, plus:	

•   Prelim conflicts (makeup requests) at midnight on CMS	

•  A3 out today; short, designed to help prepare you for the exam	

	

Labs today and tomorrow:	

•  Lab 5 (lists) due	

•  pick up your graded A2s – feedback will help you for prelim	

•  Lab 6 (recursion) out – not optional, but that material is not on 

the prelim. Due at beginning of lab session after the prelim.	

	

Thursday: lecture (recursion II) as usual	
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Next week (Mar 4 – Mar 8)	

Monday Mar 4: A3 due	

	

Tuesday Mar 5: review session instead of regular lecture	

	

Labs Mar 5/6:	

•  pick up your graded A2s (if you haven't already)	

•  No new lab activity, optional attendance: treat as office hours, or 

opportunity to work more on Lab 6 (due in lab the week after)	

	

Thursday Mar 7: 	

•  "lecture" = office hours with profs (location TBA)	

•  Prelim: 7:30-9pm, 116 Kennedy Hall/Call Auditorium	
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A2	

 	


We provided feedback as written comments, not grades*. 	

So:	

•   Please pick up your A2 in lab this week; the A2 material will 

be on the prelim. (If it's missing, your partner might have it.)	

•  Make sure you can reproduce every single bit of the solutions 

on your own exactly.**	

  	

 *Everyone who submitted received the same  "participation" grade, which 
enabled us to finish the grading faster. 	

**Except we don't care whether you wrote "end" to indicate the end of  
execution  or not.	
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CS1110 Spring 2013 Assignment 2 solution

d = min(y, x)

rot_x(q)
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New In-Lab Collaboration Policy	

 	


To get your questions answered in lab faster:	

	

We (now) encourage you to talk to your table-mate or other 
students in lab to solve the problems you are given.  You may 
look at each other's lab code while in lab. 	
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"Submission petitions": new policy	

 	


Need an extension/missed a submission deadline?  Please email 
head TA Qin Jia (qj34@cornell.edu), not the instructor(s).  	

	

(You can cc: (both) of us profs on such email, but coordination will be 
handled by Qin.  We (profs Marschner and Lee) need to devote more time to 
content creation and helping students with questions.)	
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x = [7, ['j', 'k'], ['A', 'B', [3, 6]], 5]

Nested Lists (appear in A3)	


•  Lists can hold any objects	

•  Lists are objects	

•  Therefore lists can hold other lists!	


x[0] x[1][1] x[2][2][1]x[2][0]

x[1] x[2] x[2][2]a = ['j', 'k']
b = [3, 6]
c = ['A', 'B', b]
x = [7, a, c, 5]

A Recursive Function	

def num_es(s):
    """Returns: number of ‘e’s in s. Precond: s a string"""

if s == '':  # case: s is empty string
        return 0

    # case: <s> has at least one char 
    return ((1 if s[0] == 'e' 
                    else 0) +  
                 num_es(s[1:]))

Indeed, if s has at least one character, the number of 'e's in 
s is the number of 'e's in s[0] + the number of 'e's in s[1:].	


How to Think About Recursive Functions	


1.  Have a precise function specification.	

2.  Base case(s): 	


  When the argument values are as "small" as possible 	

  When the answer is determined with little calculation.	


3.  Recursive case(s): 	

  Verify recursive cases with the specification	


4.  Termination: 	

  Arguments of calls must somehow get “smaller”, so each 

recursive call gets closer to a base case	


Understanding the String Example	


•  Step 1:  Have a precise specification	

    def num_es(s):
        """Returns: number of ‘e’s in s. Precond: s a string"""
        # case: s is empty string
        if s == '':
            return 0

        # case: s has at least one char
        # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]
        return (1 if s[0] == 'e' else 0) +  num_es(s[1:])	


•  Step 2: Check the base case	

  When s is the empty string, 0 is returned.  Good.	


Recursive case	


Base case	
 “Write” your return 
statement using the 

specification	


Understanding the String Example	


•  Step 3:  Recursive calls make progress toward termination	

    def num_es(s):
        """Returns: # of ‘e’s in s"""
        # {s is empty}
        if s == '':
            return 0

        # { s at least one char }
        # return # of ‘e’s in s[0]+# of ‘e’s in s[1:]
        return (1 if s[0] == 'e' else 0) +  num_es(s[1:])	


•  Step 4: Recursive case is correct	

  Just check the specification	


argument s[1:]	


parameter s	

argument s[1:] is smaller than	

parameter s, so there is progress	

toward reaching base case 0	


Example: Remove Blanks from a String	

def deblank(s):
    """Returns: s with blanks removed"""
    if s == '':
        return s

    # case: s is not empty
    if s[0] in string.whitespace:
        return deblank(s[1:])

    # case: s not empty and s[0] not blank
    return (s[0] +�

          deblank(s[1:]))
	


•  Check the four points:	

1.  Precise specification?	

2.  Base case: correct?	

3.  Recursive case: progress 

toward termination?	

4.  Recursive case: correct?	


Expression: x in thelist 
returns True if x is a 
member of list thelist
(and False if it is not)	



