
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 9: Lists and Sequences	

CS1110

Non-working emails:	

daniel_yoon@loomis.org	

mkomrowski@verizon.net	

	

Assignment 2	

…is out! It is very short, on

paper, due next class.	

	

Lists: Sequences of Objects	

String	

•  s = 'abc de'

•  Put characters in quotes	

§  Use \' for quote character	

•  Access characters with []

§  s[0] is 'a'

§  s[6] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c de'

List	

•  x = [5, 6, 5, 9, 15, 23]

•  Put items inside [] 	

§  Separate by commas	

•  Access items with []

§  x[0] is 5

§  x[6] causes an error	

§  x[0:2] is [5, 6] (excludes 2nd 5)	

§  x[3:] is [9, 15, 23] 	

a	

 b	

 c	

 	

 d	

0 1 2 3 4

e	

5

5	

 6	

 8	

 9	

 15	

0 1 2 3 4

23 	

5

Sequence is a name we give to both	

Things that Work for All Sequences	

x = [5, 6, 9, 6, 15, 5]
s = ‘slithy’	

x.index(5) → 0	

x.count(6) → 2	

len(x) → 6	

x[4] → 15	

x[1:3] → [6, 9]	

x[3:] → [6, 15, 5]	

x[–2] → 15	

x + [1, 2]

→ [5, 6, 9, 6, 15, 5, 1, 2]	

x * 2

→ [5, 6, 9, 6, 15, 5, 5, 6, 9, 6, 15, 5]	

15 in x → True	

s.index(‘s’) → 0	

s.count(‘t’) → 1	

len(s) → 6	

s[4] → “h”	

s[1:3] → “li”

s[3:] → “thy”	

s[–2] → “h”	

s + ‘ toves’

→ “slithy toves”	

s * 2

→ “slithyslithy”	

‘t’ in s → True

the smallest i for
which x[i] == 5

the number of is for
which x[i] == 6

methods

built-in fn.

slicing

op
er

at
or

s

Difference: Lists Hold Any Type	

5	

 ‘a’	

 ‘joy’	

 24.3	

 id1	

 id3	

 id2	

0	

0 1 2 3 4 5 7 6

5	

 6	

 8	

 9	

 15	

0 1 2 3 4

23 	

5

‘H’	

0

‘e’	

1

‘l’	

2

‘l’	

 ‘o’	

 ‘ ’	

 ‘World’	

3 4 5 6

id1	

0

id2	

1

id5	

2

id4	

3

id3	

4

Point	

x 1.0

y 2.0

z 3.0

id5	

Point	

x 1.0

y 2.0

z 3.0

id4	

Point	

x 1.0

y 2.0

z 3.0

id3	

Point	

x 1.0

y 2.0

z 3.0

id2	

Point	

x 1.0

y 2.0

z 3.0

id1	

a list of integers	

a list of strings	

a list of objects of class Point	

a heterogeneous list	

Difference: Lists are mutable	

•  Their contents can be altered	

§  by assignment to list items	

x = [5, 7, 3, 1]

x[1] = 8

§  using methods	

x.append(2)

x.extend([3, 4])

x.insert(5, 6)

x.sort()

•  Draw lists as folders	

§  because they are mutable objects	

§  can omit type to save space

id6	

5	

 7	

0 1

id6	

x	

8	

✗	

3	

2
1	

3
2	

4
3	

5
4	

6

✗	

✗	

6	

 3	

4	

7

1	

 2	

 3	

 3	

 4	

 5	

 6	

 8	

✗	

 ✗	

 ✗	

Does not work for strings	

s = 'Hello World!'

s[0] = 'J' ERROR	

s.append('?') ERROR	

See Python
Standard Library
for more methods	

Lists vs. Objects With Attributes	

List	

•  Attributes are indexed	

§  Example: a[2]

Point	

•  Attributes are named	

§  Example: p.x

id6	

1	

 2	

0 1

3	

2

3	

3

4	

4

5	

5

6	

6

8	

7

id6	

a	

 id7	

p	

Point	

x 3.0

y 4.0

z 5.0

id7	

Clicker Exercise	

•  Execute the following:	

>>> x = [5, 6, 5, 9, 10]

>>> x[3] = -1

>>> x.insert(1, 2)

•  What is x[4]?	

A: 10	

B: 9	

C: -1	

D: ERROR	

E: I don’t know	

•  Execute the following:	

>>> x = [5, 6, 5, 9, 10]

>>> y = x

>>> y[1] = 7

•  What is x[1]?	

	

 A: 7	

B: 5	

C: 6	

D: ERROR	

E: I don’t know	

swap(x, 3, 4)

Lists and Functions: Swap	

def swap(b, h, k):

"""Procedure swaps b[h] and b[k] in b

 Precondition: b is a mutable list, h �
 and k are valid positions in the list""”

temp= b[h]

b[h]= b[k]

b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.	

1	

2	

3	

b 	

h 	

k	

temp	

swap:1 2 3

id7	

 3	

 4	

id7	

3	

	

4	

	

0 1
1	

	

2
5	

 	

3
9	

 	

4
3	

	

5
2	

	

6
0	

	

7

id7	

x	

✗	

✗	

	

9	

	

5	

5	

✗	

✗	

✗	

Slicing Lists Makes Copies	

x = [5, 6, 5, Point(3,4,5)]
 y = x[1:3]

id8	

5	

 6	

0 1

5	

2

id7	

3

id8	

x	

 id9	

6	

 5	

0 1

id9	

y	

Point	

x 3.0

y 4.0

z 5.0

id7	

z = x[:]

id10	

5	

 6	

0 1

5	

2

id7	

3

id10	

z	

Clicker Exercise	

•  Execute the following:	

>>> x = [5, 6, 5, 9, 10]

>>> y = x[1:]

>>> y[0] = 7

•  What is x[1]?	

	

•  Execute the following:	

>>> x = [5, Point(1, 2, 3), 6]

>>> y = x[1:]

>>> y[0].x = 7

•  What is x[1].x?	

	

 A: 1	

B: 5	

C: 7	

D: ERROR	

E: I don’t know	

A: 7	

B: 5	

C: 6	

D: ERROR	

E: I don’t know	

Lists and Strings: They go together like…	

…a horse and carriage? Bread and butter? 	

	

text = 'Rama lama lama\nke ding a de ding a dong'

words = text.split()

lines = text.split('\n')

sep = '-'

print sep.join(words)

s = (sep.join(lines[0].split()) + ' ' + sep.join(lines[1].split()))

text.split(sep): return a list of
the words in text (separated by
sep, or whitespace by default)	

sep.join(words): concatenate
the items in the list of strings
words, separated by sep.	

[‘Rama’, ‘lama’, ‘lama’, ‘ke’, …]	

returns a list of
two strings	

 ‘Rama-lama-lama-ke…’	

‘Rama-lama-lama ke-ding-a-de-ding-a-dong’	

Foreshadowing: Iteration	

•  To process a list, you often want to do the same thing to
each item in the list. Two ways to do this:	

§  The map function:	

map(⟨function⟩, ⟨list⟩)

§  The for statement:	

for ⟨variable⟩ in ⟨list⟩:

 ⟨statements⟩	

Call the function once for each
item in the list, with the list
item as the argument, and put
the return values into a list.	

Execute the statements once for
each item in the list, with the
value of the variable set to the
list item.	

Tuples	

•  Tuples fall between strings and lists	

§ write them with just commas: 42, 4.0, ‘x’

§  often enclosed in parentheses: (42, 4.0, ‘x’)

strings:	

immutable sequences of characters	

lists:	

mutable sequences of any objects	

tuples:	

immutable sequences of any objects	

Conventionally use lists for:	

•  long sequences	

•  homogeneous sequences	

•  variable length sequences	

Conventionally use tuples for:	

•  short sequences	

•  heterogeneous sequences	

•  fixed length sequences	

length 1: (42,)

length 0: ()

“tuple” generalizes “pair,”
“triple,” “quadruple,” …	

