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Assignment 2	


…is out!  It is very short, on 

paper, due next class.	


	





Lists: Sequences of Objects	



String	



•  s = 'abc de'


•  Put characters in quotes	


§  Use \' for quote character	



•  Access characters with [ ]

§  s[0] is 'a'

§  s[6] causes an error	


§  s[0:2] is 'ab' (excludes c)	


§  s[2:] is 'c de'


List	



•  x = [5, 6, 5, 9, 15, 23]


•  Put items inside [ ] 	


§  Separate by commas	



•  Access items with [ ]

§  x[0] is 5

§  x[6] causes an error	


§  x[0:2] is [5, 6] (excludes 2nd 5)	


§  x[3:] is [9, 15, 23] 	
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Sequence is a name we give to both	





Things that Work for All Sequences	



x = [5, 6, 9, 6, 15, 5]
s = ‘slithy’	



x.index(5) → 0	


x.count(6) → 2	


len(x) → 6	


x[4] → 15	


x[1:3] → [6, 9]	


x[3:] → [6, 15, 5]	


x[–2] → 15	


x + [1, 2]



→ [5, 6, 9, 6, 15, 5, 1, 2]	


x * 2



→ [5, 6, 9, 6, 15, 5, 5, 6, 9, 6, 15, 5]	


15 in x → True	



s.index(‘s’) → 0	


s.count(‘t’) → 1	


len(s) → 6	


s[4] → “h”	


s[1:3] → “li” 

s[3:] → “thy”	


s[–2] → “h”	


s + ‘ toves’ 



→ “slithy toves”	


s * 2 



→ “slithyslithy”	


‘t’ in s → True
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Difference: Lists Hold Any Type	
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a list of integers	



a list of strings	



a list of objects of class Point	



a heterogeneous list	





Difference: Lists are mutable	



•  Their contents can be altered	


§  by assignment to list items	



x = [5, 7, 3, 1]

x[1] = 8


§  using methods	


x.append(2)

x.extend([3, 4])

x.insert(5, 6)

x.sort()


•  Draw lists as folders	


§  because they are mutable objects	


§  can omit type to save space
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Does not work for strings	


s = 'Hello World!'

s[0] = 'J'  ERROR	


s.append('?')  ERROR	



See Python 
Standard Library 
for more methods	





Lists vs. Objects With Attributes	



List	



•  Attributes are indexed	


§  Example: a[2]


Point	



•  Attributes are named	


§  Example: p.x
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Clicker Exercise	



•  Execute the following:	


>>> x = [5, 6, 5, 9, 10]

>>> x[3] = -1

>>> x.insert(1, 2)


•  What is x[4]?	



A: 10	


B: 9	


C: -1	


D: ERROR	


E: I don’t know	



•  Execute the following:	


>>> x = [5, 6, 5, 9, 10]

>>> y = x

>>> y[1] = 7


•  What is x[1]?	


	

 A: 7	



B: 5	


C: 6	


D: ERROR	


E: I don’t know	





swap(x, 3, 4)


Lists and Functions: Swap	



def swap(b, h, k):


"""Procedure swaps b[h] and b[k] in b



   Precondition: b is a mutable list, h �
    and k are valid positions in the list""”


temp= b[h]


b[h]= b[k]


b[k]= temp


Swaps b[h] and b[k], 
because parameter b 
contains name of list.	
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Slicing Lists Makes Copies	



x = [5, 6, 5, Point(3,4,5)]
 y = x[1:3]
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Clicker Exercise	



•  Execute the following:	


>>> x = [5, 6, 5, 9, 10]

>>> y = x[1:]

>>> y[0] = 7


•  What is x[1]?	


	



•  Execute the following:	


>>> x = [5, Point(1, 2, 3), 6]

>>> y = x[1:]

>>> y[0].x = 7


•  What is x[1].x?	


	

 A: 1	



B: 5	


C: 7	


D: ERROR	


E: I don’t know	



A: 7	


B: 5	


C: 6	


D: ERROR	


E: I don’t know	





Lists and Strings: They go together like…	



…a horse and carriage? Bread and butter? 	

	



text = 'Rama lama lama\nke ding a de ding a dong'

words = text.split()

lines = text.split('\n')

sep = '-'

print sep.join(words)

s = (sep.join(lines[0].split()) + ' ' + sep.join(lines[1].split()))


text.split(sep): return a list of 
the words in text (separated by 
sep, or whitespace by default)	



sep.join(words): concatenate 
the items in the list of strings 
words, separated by sep.	



[‘Rama’, ‘lama’, ‘lama’, ‘ke’, …]	


returns a list of 
two strings	

 ‘Rama-lama-lama-ke…’	



‘Rama-lama-lama ke-ding-a-de-ding-a-dong’	





Foreshadowing: Iteration	



•  To process a list, you often want to do the same thing to 
each item in the list.  Two ways to do this:	



§  The map function:	




map(⟨function⟩, ⟨list⟩)


§  The for statement:	




for ⟨variable⟩ in ⟨list⟩:


     ⟨statements⟩	



Call the function once for each 
item in the list, with the list 
item as the argument, and put 
the return values into a list.	



Execute the statements once for 
each item in the list, with the 
value of the variable set to the 
list item.	





Tuples	



•  Tuples fall between strings and lists	


§ write them with just commas: 42, 4.0, ‘x’

§  often enclosed in parentheses: (42, 4.0, ‘x’)


strings:	


immutable sequences of characters	



lists:	


mutable sequences of any objects	



tuples:	


immutable sequences of any objects	



Conventionally use lists for:	


•  long sequences	


•  homogeneous sequences	


•  variable length sequences	



Conventionally use tuples for:	


•  short sequences	


•  heterogeneous sequences	


•  fixed length sequences	



length 1: (42,)

length 0: ()


“tuple” generalizes “pair,” 
“triple,” “quadruple,” …	




