
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

CS1110

 The kid spoke. Very squeakily.	

 "I charge you ... to ... to..." Get on with it! "T-t-tell me your
n-name."	

 That's usually how they start, the young ones. Meaningless
waffle. He knew, and I knew that he knew, my name already;
otherwise how could he have summoned me in the first place?
You need the right words, the right actions, and most of all the
right name. I mean, it's not like hailing a cab − you don't get
just anybody, when you call.	

...	

 "I am Bartimaeus! I am Sakhr al-Jinni, N'gorso the Mighty,
and the Serpent of Silver Plumes! I have rebuilt the walls of
Uruk, Karnak, and Prague. I have spoken with Solomon....I am
Bartimaeus! I recognize no master!"	

 − The Amulet of Samarkand, Jonathan Stroud	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 7: More on function calls; if-then-else	

CS1110

No office hours this week: 	

They've been replaced by the scheduled one-on-ones.	

Readings:	

Today: 3.9-3.10 (note that our notation differs slightly) and
5.1-5.7	

Next time: 5.1-5.7 and 10.0-10.2 and 10.4-10.6	

Bring this handout to next lecture; we'll do conditionals then	

(having decided to slow down the pace a little.)	

 A Piazza Parable	

Starring:	

"Student": Prof. Lee	

"Professor": Prof. Marschner	

Moral: When posting a question on Piazza, please
paste in the exact error messages you get. 	

(Don't paste in your code.)	

Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

CS1110

 The kid spoke. Very squeakily.	

 "I charge you ... to ... to..." Get on with it! "T-t-tell me your
n-name."	

 That's usually how they start, the young ones. Meaningless
waffle. He knew, and I knew that he knew, my name already;
otherwise how could he have summoned me in the first place?
You need the right words, the right actions, and most of all the
right name. I mean, it's not like hailing a cab − you don't get
just anybody, when you call.	

...	

 "I am Bartimaeus! I am Sakhr al-Jinni, N'gorso the Mighty,
and the Serpent of Silver Plumes! I have rebuilt the walls of
Uruk, Karnak, and Prague. I have spoken with Solomon....I am
Bartimaeus! I recognize no master!"	

 − The Amulet of Samarkand, Jonathan Stroud	

Q: Why is it important to understand the notation for and mechanics of
variables, objects, and frames? ���
A: You get a clear model of what names are accessible and what objects they refer
to. Bonus: you'll understand error messages better.	

So, to review: what is a variable (in Python)? A name for referring to a value/
object. Two names can refer to the same thing; example: "that person talking in front
of the room" and "the CS1110 prof with black hair". 	

What a name refers to can change (hence the name "variable"): "that person talking
in front of the room" could refer to the person Prof. Lee at one time, and the person
Prof. Marschner at another). 	

What is an object? An actual thing that can be referred to. 	

What is an ID? The unique identifier --- "one true name" --- for an object. Each
object has a distinct id.	

What is a frame? The function's "local view of the world": the names it defines and
uses locally. These names disappear when the function call finishes.	

How evaluate a function call expression, reformatted slightly:	

 Uno: Create a frame for the call	

 Dos: Assign arguments to parameters	

	

(a) For each parameter (“the names in parentheses in the function header”),
put a variable with that name in the frame 	

	

(b) Evaluate the arguments (“the values of the stuff in parentheses in the
function call”)	

	

(c) Put the argument values in the corresponding parameter variables in the frame.	

	

[The potentially hard/new concept embedded here: again, it’s important to
distinguish names for things from the things that are named.]	

 Tres: Execute function body, updating the frame's program counter (line number)
as you go	

 Quatro: Erase Cross out the frame	

The value of the function call expression is the returned value (if there is one)	

import lec07

lt_speed = 3e8

lec07.violate_physics(...)

code with function call	

function "definition" (in lec07.py)	

violate_physics:...

def violate_physics(...?):

 """Changes lt_speed"""

1 ...?

3 × 108	

lt_speed	

Ex: Can a Python function* change the speed of light?	

*Given the Python we know at this point, where all assignments to a "plain
variable" (not expressions with a "dot" in them) within a function are treated as
referring to a local variable.	

That is, if lt_speed is a variable, can you write a function
violate_physics(...) that changes the value of lt_speed?	

What does your code for
violate_physics look like?	

(A) 0 params, 0 local vars	

(B) 1 param, 0 local vars	

(C) 0 params, 1 local var	

(D) ≥1 of each	

(E) There can't be such a function	

import lec07

lt_speed = 3e8

lec07.v_p_try1()

code with function call	

function definition	

v_p_try1:1

def v_p_try1():

 """Changes lt_speed"""

1 lt_speed = 42.0

3 × 108	

lt_speed	

That is, if lt_speed is a variable, can you write a function
violate_physics(...) that changes the value of lt_speed?	

lt_speed	

 42.0	

✗	

*Given the Python we know at this point, where all assignments to a "plain
variable" (not expressions with a "dot" in them) within a function are treated as
referring to a local variable.	

import lec07

lt_speed = 3e8

lec07.v_p_try2(42.0)

code with function call	

function definition	

v_p_try2

def v_p_try2(new):

 """Changes lt_speed to new"""

1 lt_speed = new

3 × 108	

lt_speed	

That is, if lt_speed is a variable, can you write a function
violate_physics(...) that changes the value of lt_speed?	

new	

 42.0	

lt_speed	

 42.0	

✗	

*Given the Python we know at this point, where all assignments to a "plain
variable" (not expressions with a "dot" in them) within a function are treated as
referring to a local variable.	

import lec07

lt_speed = 3e8

lec07.v_p_try3(lt_speed)

code with function call	

function definition	

v_p_try3:1

def v_p_try3(lt_speed):

 """Changes lt_speed to 42.0"""

1 lt_speed = 42.0

3 × 108	

lt_speed	

That is, if lt_speed is a variable, can you write a function
violate_physics(...) that changes the value of lt_speed?	

lt_speed	

 3 × 108	

✗	

✗	

 42.0	

note: only one lt_speed in the frame	

*Given the Python we know at this point, where all assignments to a "plain
variable" (not expressions with a "dot" in them) within a function are treated as
referring to a local variable.	

import lec07

lt_speed = 3e8

lt_speed = lec07.boring(-3e8)

code with function call	

function definition	

def boring(new):

 """Returns new"""

1 return new

3 × 108 -3 × 108 	

lt_speed	

That is, if lt_speed is a variable, can you write a function
violate_physics(...) that changes the value of lt_speed?	

✗	

If functions are passed the IDs of objects as arguments,	

...then they can "reach out" beyond the frame because
they have a "handle" on the object: they can "summon"
the object by its "true name".	

With that in mind, now let's do the exercise.	

How many things are wrong with this picture?	

(A)  0-1 (B) 1-2 (C) 3-5 (D) more than 5 	

(E) You mean besides the fact that you think I can answer this?	

[note: the ...distanceFrom... value will be 5.0]	

pt norm	

pt.x pt.y pt.z	

rescale: 5

p	

 5	

0.0	

 0.6	

 0.8	

id1	

p	

Point	

x 0.0
y 3.0
z 4.0

id1	

Point	

x 0.0
y 0.6
z 0.8

p_new	

