
Announcements	


Slides by D. Gries, L. Lee, S. Marschner, W. White	


Lecture 5: Objects	

CS1110

Grades for Lab 2 should all 
be posted in CMS. Please 
verify that you have a 1 if 
you checked off the lab. Let 
course staff know if your 
grade is missing!	


Install troubles? Post on 
Piazza! Including on Linux
—install procedures vary but 
are usually simple.	


Reading for next time:	

3.7–3.13 on functions and 
function calls	


Read Piazza about the 
surprise wrinkle in Lab 2 Q4.	






Example: Points in 3D space	


•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	


•  What if we have many points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	


•  How about a single variable���
that represents a point?	


x 2.0 

y 3.0 

z 5.0 



	

	

	

	

	

	


Example: Points in 3D space	


•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	


•  What if we have many points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	


•  How about a single variable���
that represents a point?	


x 2.0 

y 3.0 

z 5.0 



Objects: Organizing Data in Folders	


•  An object is like a manila folder	

•  It contains variables	


§  These variables are attributes	

§  Their values can change	


•  It has an ID that identifies it	

§ Unique number assigned by Python���

(just like a NetID for a Cornellian)	

§ Does not ever change	

§ Has no meaning—only identifies	


	

	

	

	

	

	


Unique���
identifier���

on tab	


x 2.0 

y 3.0 

z 5.0 

id1	




Point	


Classes: Types for Objects	


•  Everything needs a type	

§ An object’s type is a class	


•  Modules provide classes 	

§  Example: point.py
§  Import to use Point

•  We’ll learn how to define 
classes later	

§ Do not try to understand the 

contents of point.py
§  Lots more to learn first	

	


class name	


x 2.0 

y 3.0 

z 5.0 

id1	




Constructor: Function to Make Objects	


•  How do we create objects?	

§  Other types have literals	

§  Example: 1, "abc", True 	


•  Constructor Function: 	

§  Same name as the class	

§  Example: Point(0, 0, 0)
§  Makes an object (manila folder)	

§  Returns folder ID as its value	


•  Example: p = Point(0, 0, 0)
§  Creates a Point object	

§  Stores object’s ID in p	


id2	
p	

Variable	

stores ID	

not object	


	

instantiated	


object���
	


Point	


x 0.0 

y 0.0 

z 0.0 

id2	




Referencing Objects With Variables	


•  Variable stores object ID	

§  Reference to the object 	

§  Reason for folder analogy	


•  Assignment uses object ID	

§  Example: q = p
§  Takes ID from p	

§  Puts the ID in q	

§  Does not make new folder!	


•  Use id() to see folder IDs	

§  id(p) and id(q) evaluate to id2	


id2	
p	
 id2	
q	


Point	


x 0.0 

y 0.0 

z 0.0 

id2	


Actually some 
big number	




Objects and Attributes	


•  Attributes are variables ���
that live in objects	

§  Can use in expressions	

§  Can assign values to them	


•  Access: ⟨variable⟩.⟨attribute⟩	

§  Example: p.x
§  Same syntax as accessing a 

variable in a module: math.pi

•  Putting it all together	

p = Point(1, 2, 3)
p.x = p.y + p.z

id3	
p	


Point	


x 1.0 

y 2.0 

z 3.0 

id3	


✗	
 5.0	




Exercise: Attribute Assignment	

•  Create point; name into q and p	


p = Point(0,0,0)
q = p

•  Execute the assignments:	

p.x = 5.6
q.x = 7.4

•  What is value of p.x?	


p	


q	


A: 5.6	

B: 7.4	

C: id4	

D: I don’t know	


Point	


x 0.0 

y 0.0 

z 0.0 

id4	


id4	


id4	




Point	


x 0.0 

y 0.0 

z 0.0 

id4	


5.6	
✗	
 7.4	
✗	


Exercise: Attribute Assignment	

•  Create point; name into q and p	


p = Point(0,0,0)
q = p

•  Execute the assignments:	

p.x = 5.6
q.x = 7.4

•  What is value of p.x?	


p	


q	


A: 5.6	

B: 7.4	

C: id4	

D: I don’t know	


id4	


id4	


CORRECT	




Methods: Functions Tied to Objects	


•  Method: function tied to object	

§  Method call looks like a function 

call preceded by a variable name: 
⟨variable⟩.⟨method⟩(⟨arguments⟩)

§  Example: p.distanceFromOrigin()	

§  Example: p.distanceTo(q)	


•  Name resolution	

§  ⟨object⟩.⟨name⟩ means “go to 
object and look for something 
called name.”	


§  Python looks first in the object’s 
folder, then in the object’s class	


Point	


x 5.0 

y 2.0 

z 3.0 

id3	


__init__(x, y, z)	

distanceFromOrigin()	

distanceTo(other)	


Point	


p id3 



Surprise: All Values are in Objects!	


•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 2.5
>>> id(x)

•  But they are special	

§  They are immutable���

(contents cannot change)	

§  Distinction between value 

and identity is immaterial	

§  So we can ignore the folder	
 2.5	
x	


float	


2.5 

id5	


id5	
x	




Surprise: All Values are in Objects!	


•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = “foo”
>>> id(x)

•  But they are special	

§  They are immutable���

(contents cannot change)	

§  Distinction between value 

and identity is immaterial	

§  So we can ignore folder	
 “foo”	
x	


str	


“foo” 

id6	


id6	
x	


includes strings	




Strings Have Methods Too	


•  We have seen expressions 
like s.index('a')

•  Now we can recognize 
them as method calls	


•  String methods do not 
change the string	

§  Can’t: strings immutable	

§  “Modifications” made by 

returning a new string	

§  s.replace('o','uh') evaluates 

to 'Helluh Wuhld!' but s is 
still 'Hello World'

“foo”	
x	


str	


“foo” 

id6	


id6	
x	


index(substring)	

replace(old, new)	

…	


str	




Class Objects are Mutable	


•  Unlike int, str, etc., objects 
of class type (and some 
others) are mutable	

§  You can change them	

§  Methods can have effects 

besides their return value	

•  Example:	


f = open('jabber.txt')
s = f.read()
f.close()

•  Example: p.projectToFloor()

file	

id6	
 f id6 

name,	

position,	

state, …	


close()	

read([size])	

readline(), …	


file	


Opens a file 
on your hard 
disk, returns a 
file object you 
can read from	


http://docs.python.org/2/library/stdtypes.html#file-objects	




Where To From Here?	


•  Right now, just try to understand objects	

§ All Python programs use objects	

§ Most small programs use objects of classes that are 

defined by the Standard Library or other libraries.	

•  OO Programming is about creating classes	


§  Eventually you will make your own classes	

§  Classes are the primary tool for organizing more 

complex Python programs	

§  But we need to learn other basics first	



