CS1110

Lecture 5: Objects

[Grades for Lab 2 should all A
be posted in CMS. Please
verity that you have a 1 if

you checked off the lab. Let
course staff know if your
grade 1s missing!

-

- /

Read Piazza about the

surprise wrinkle in Lab 2 Q4.

-

Install troubles? Post on
Piazza! Including on Linux
—1nstall procedures vary but
are usually simple.

-

Reading for next time:

3.7-3.13 on functions and
function calls

Example: Points in 3D space

 Want a point in 3D space
* We need three variables

" Xx,y,zcoordinates

 What if we have many points?

= Vars x0, y0, zO for first point
= Vars x1, yl, zI for next point

= This can get really messy

 How about a single variable
that represents a point?

Z

A

(2,3,5)

x|2.0

y 3.0

Example: Points in 3D space

 Want a point in 3D space
* We need three variables
" Xx,y,zcoordinates
 What if we have many points?

= Vars x0, y0, zO for first point
= Vars x1, yl, zI for next point

. o o o X

= This can get really messy y

 How about a single variable
that represents a point?

2.0

3.0

5.0

Objects: Organizing Data in Folders

* An object is like a manila folder

* Jt contains variables

* These variables are attributes

= Their values can change

e It has an ID that identifies it

= Unique number assigned by Python
(ust like a NetlID for a Cornellian)

= Does not ever change

= Has no meaning —only identifies

Unique
1dentifier
on tab

/

id1

x|2.0

y 3.0

z!5.0

Classes: Types for Objects

e Everything needs a type

= An object’s type is a class
. class name

* Modules provide classes

= Example: point.py id1

= Import to use Point Pomnt
 We’ll learn how to define x[2.0

classes later y 3.0
* Do not try to understand the z|5.0

contents of point.py
= [Lots more to learn first

Constructor: Function to Make Objects

 How do we create objects? Variable
= Other types have literals p |1d2 stores 1D
= Example: 1, "abc", True not object
e Constructor Function: instantiated
= Same name as the class ‘2 object
= Example: Point(0, 0, 0) Point

= Makes an object (manila folder)

= Returns folder ID as its value x|0.0
e Example: p = Point(0, 0, 0) y 0.0
= Creates a Point object z10.0

= Stores object’s ID in p

Referencing Objects With Variables

e Variable stores object ID

= Reference to the object p|id2 q |id2

= Reason for folder analogy

e Assignment uses object ID
= Example: g =p {2
= Takes ID from p
= Puts the ID in g

Point

= Does not make new folder! x|0.0

e Use id() to see folder IDs y 0.0

= id(p) and id(q) evaluate to id2 z10.0
1

Actually some
big number

Objects and Attributes

e Attributes are variables
that live in objects

= Can use In expressions
= Can assign values to them

e Access: {variable) {attribute)
= Example: p.x

= Same syntax as accessing a
variable in a module: math.pi

e Putting 1t all together
p = Point(1, 2, 3)
DX=DYy +D.Z

id3

id3

Point

Exercise: Attribute Assignment

e Create point; name into q and p

p = Point(0,0,0) p 1dd
=D q id4
e Execute the assignments:
p.X=195.06
X ="7.4 1d4
: Point
 What is value of p.x? o
A:5.6 x 0.0
B:74 y 0.0
C: id4
D: I don’t know z|0.0

Exercise: Attribute Assignment

e Create point; name into q and p >
p = Point(0,0,0) PL 1
=D q id4
e Execute the assignments:
p.X=195.06
qx="74 id4
: Point
 What is value of p.x? o
A:5.6 x| Q0 P 7.4
B: 74 CORRECT y 0.0
C:id4
D: I don’t know z10.0

Methods: Functions Tied to Objects

 Method: function tied to object 13 p|id3
= Method call looks like. a function Point
call preceded by a variable name:
(variable) {method)({arguments)) x15.0
= Example: p.distanceFromOrigin() v]2.0
= Example: p.distanceTo(q)
z|3.0

e Name resolution

= (object) {name) means “go to
object and look for something
called name.”

= Python looks first in the object’s
folder, then in the object’s class

Surprise: All Values are in Objects!

* Including basic values :
= int, float, bool, str

* Example:
>>> X =2.0
>>> {d(X)

* But they are special

= They are immutable
(contents cannot change)

= Distinction between value
and identity 1s immaterial

= So we can ignore the folder X 2.5

Surprise: All Values are in Objects!

* Including basic values :
= int, float, bool, str

* Example:
>>> X —_ “foo?’
>>> {d(x)

* But they are special

= They are immutable
(contents cannot change)

= Distinction between value
and identity 1s immaterial

= So we can ignore folder x| “foo”

Strings Have Methods Too

* We have seen expressions :
like s.index('a’)

 Now we can recognize
them as method calls

e String methods do not
change the string

= Can’t: strings immutable

= “Modifications” made by
returning a new string

= g.replace('o','uh’) evaluates (O
to 'Helluh Wuhld!" but s 1s
still 'Hello World'

X “fOO,,

Class Objects are Mutable

e Unlike 1nt, str, etc., objects
of class type (and some
others) are mutable

" You can change them

= Methods can have effects
besides their return value

~

Opens a file
on your hard
disk, returns a

e Example: file object you
f = open(‘jabber.txt") can read from)
s = f.read()
f.close()

e Example: p.projectToFloor()

[http://docs.python.org/2/library/stdtypes.html#file-objects]

6 f|id6

file

name,
position,
state, ...

Where To From Here?

e Right now, just try to understand objects
= All Python programs use objects

= Most small programs use objects of classes that are
defined by the Standard Library or other libraries.

* OO Programming 1s about creating classes
= Eventually you will make your own classes

= Classes are the primary tool for organizing more
complex Python programs

= But we need to learn other basics first

