
Lecture 5: 2/4/13	



CS1110 Spring 2013: Objects	

 1	



Example: Points in 3D space	



•  Want a point in 3D space	


§  We need three variables	


§  x, y, z coordinates	



•  What if we have many points?	


§  Vars x0, y0, z0 for first point	


§  Vars x1, y1, z1 for next point	


§  …	


§  This can get really messy	



•  How about a single variable���
that represents a point?	



x 2.0 

y 3.0 

z 5.0 

Objects: Organizing Data in Folders	



•  An object is like a manila folder	


•  It contains variables	



§  These variables are attributes	


§  Their values can change	



•  It has an ID that identifies it	


§ Unique number assigned by Python���

(just like a NetID for a Cornellian)	


§ Does not ever change	


§ Has no meaning—only identifies	



	


	


	


	


	


	



Unique���
identifier���

on tab	



x 2.0 

y 3.0 

z 5.0 

id1	



Point	



Classes: Types for Objects	



•  Everything needs a type	


§ An object’s type is a class	



•  Modules provide classes 	


§  Example: point.py

§  Import to use Point


•  We’ll learn how to define 
classes later	


§ Do not try to understand the 

contents of point.py

§  Lots more to learn first	


	



class name	



x 2.0 

y 3.0 

z 5.0 

id1	



Constructor: Function to Make Objects	



•  How do we create objects?	


§  Other types have literals	


§  Example: 1, "abc", True 	



•  Constructor Function: 	


§  Same name as the class	


§  Example: Point(0, 0, 0)

§  Makes an object (manila folder)	


§  Returns folder ID as its value	



•  Example: p = Point(0, 0, 0)

§  Creates a Point object	


§  Stores object’s ID in p	



id2	

p	


Variable	


stores ID	


not object	



	


instantiated	



object���
	



Point	



x 0.0 

y 0.0 

z 0.0 

id2	



Referencing Objects With Variables	



•  Variable stores object ID	


§  Reference to the object 	


§  Reason for folder analogy	



•  Assignment uses object ID	


§  Example: q = p

§  Takes ID from p	


§  Puts the ID in q	


§  Does not make new folder!	



•  Use id() to see folder IDs	


§  id(p) and id(q) evaluate to id2	



id2	

p	

 id2	

q	



Point	



x 0.0 

y 0.0 

z 0.0 

id2	



Actually some 
big number	



Objects and Attributes	



•  Attributes are variables ���
that live in objects	


§  Can use in expressions	


§  Can assign values to them	



•  Access: ⟨variable⟩.⟨attribute⟩	


§  Example: p.x

§  Same syntax as accessing a 

variable in a module


•  Putting it all together	


p = Point(1, 2, 3)

p.x = p.y + p.z


id3	

p	



Point	



x 1.0 

y 2.0 

z 3.0 

id3	



✗	

 5.0	





Lecture 5: 2/4/13	



CS1110 Spring 2013: Objects	

 2	



Exercise: Attribute Assignment	


•  Create point; name into q and p	



p = Point(0,0,0)

q = p


•  Execute the assignments:	


p.x = 5.6

q.x = 7.4


•  What is value of p.x?	



p	



q	



A: 5.6	


B: 7.4	


C: id4	


D: I don’t know	



Point	



x 0.0 

y 0.0 

z 0.0 

id4	



id4	



id4	



Methods: Functions Tied to Objects	



•  Method: function tied to object	


§  Method call looks like a function 

call preceded by a variable name: 
⟨variable⟩.⟨method⟩(⟨arguments⟩)


§  Example: p.distanceFromOrigin()	


§  Example: p.distanceTo(q)	



•  Name resolution	


§  ⟨object⟩.⟨name⟩ means “go to 
object and look for something 
called name.”	



§  Python looks first in the object’s 
folder, then in the object’s class	



Point	



x 5.0 

y 2.0 

z 3.0 

id3	



__init__(x, y, z)	


distanceFromOrigin()	


distanceTo(other)	



Point	



p id3 

Surprise: All Values are in Objects!	



•  Including basic values	


§  int, float, bool, str


•  Example:	


>>> x = 2.5

>>> id(x)


•  But they are special	


§  They are immutable���

(contents cannot change)	


§  Distinction between value 

and identity is immaterial	


§  So we can ignore the folder	

 2.5	

x	



float	



2.5 

id5	



id5	

x	



includes strings	



Strings Have Methods Too	



•  We have seen expressions 
like s.index('a')


•  Now we can recognize 
them as method calls	



•  String methods do not 
change the string	


§  Can’t: strings immutable	


§  “Modifications” made by 

returning a new string	


§  s.replace('o','uh') evaluates 

to 'Helluh Wuhld!' but s is 
still 'Hello World'


“foo”	

x	



str	



“foo” 

id6	



id6	

x	



index(substring)	


replace(old, new)	


…	



str	



Class Objects are Mutable	



•  Unlike int, str, etc., objects 
of class type (and some 
others) are mutable	


§  You can change them	


§  Methods can have effects 

besides their return value	


•  Example:	



f = open('jabber.txt')

s = f.read()

f.close()


•  Example: p.projectToFloor()


file	


id6	

 f id6 

name,	


position,	


state, …	



close()	


read([size])	


readline(), …	



file	



Opens a file 
on your hard 
disk, returns a 
file object you 
can read from	



http://docs.python.org/2/library/stdtypes.html#file-objects	



Where To From Here?	



•  Right now, just try to understand objects	


§ All Python programs use objects	


§ Most small programs use objects of classes that are 

defined by the Standard Library or other libraries.	


•  OO Programming is about creating classes	



§  Eventually you will make your own classes	


§  Classes are the primary tool for organizing more 

complex Python programs	


§  But we need to learn other basics first	




