
Lecture 5: 2/4/13	


CS1110 Spring 2013: Objects	
 1	


Example: Points in 3D space	


•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	


•  What if we have many points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	


•  How about a single variable���
that represents a point?	


x 2.0 

y 3.0 

z 5.0 

Objects: Organizing Data in Folders	


•  An object is like a manila folder	

•  It contains variables	


§  These variables are attributes	

§  Their values can change	


•  It has an ID that identifies it	

§ Unique number assigned by Python���

(just like a NetID for a Cornellian)	

§ Does not ever change	

§ Has no meaning—only identifies	


	

	

	

	

	

	


Unique���
identifier���

on tab	


x 2.0 

y 3.0 

z 5.0 

id1	


Point	


Classes: Types for Objects	


•  Everything needs a type	

§ An object’s type is a class	


•  Modules provide classes 	

§  Example: point.py
§  Import to use Point

•  We’ll learn how to define 
classes later	

§ Do not try to understand the 

contents of point.py
§  Lots more to learn first	

	


class name	


x 2.0 

y 3.0 

z 5.0 

id1	


Constructor: Function to Make Objects	


•  How do we create objects?	

§  Other types have literals	

§  Example: 1, "abc", True 	


•  Constructor Function: 	

§  Same name as the class	

§  Example: Point(0, 0, 0)
§  Makes an object (manila folder)	

§  Returns folder ID as its value	


•  Example: p = Point(0, 0, 0)
§  Creates a Point object	

§  Stores object’s ID in p	


id2	
p	

Variable	

stores ID	

not object	


	

instantiated	


object���
	


Point	


x 0.0 

y 0.0 

z 0.0 

id2	


Referencing Objects With Variables	


•  Variable stores object ID	

§  Reference to the object 	

§  Reason for folder analogy	


•  Assignment uses object ID	

§  Example: q = p
§  Takes ID from p	

§  Puts the ID in q	

§  Does not make new folder!	


•  Use id() to see folder IDs	

§  id(p) and id(q) evaluate to id2	


id2	
p	
 id2	
q	


Point	


x 0.0 

y 0.0 

z 0.0 

id2	


Actually some 
big number	


Objects and Attributes	


•  Attributes are variables ���
that live in objects	

§  Can use in expressions	

§  Can assign values to them	


•  Access: ⟨variable⟩.⟨attribute⟩	

§  Example: p.x
§  Same syntax as accessing a 

variable in a module

•  Putting it all together	

p = Point(1, 2, 3)
p.x = p.y + p.z

id3	
p	


Point	


x 1.0 

y 2.0 

z 3.0 

id3	


✗	
 5.0	




Lecture 5: 2/4/13	


CS1110 Spring 2013: Objects	
 2	


Exercise: Attribute Assignment	

•  Create point; name into q and p	


p = Point(0,0,0)
q = p

•  Execute the assignments:	

p.x = 5.6
q.x = 7.4

•  What is value of p.x?	


p	


q	


A: 5.6	

B: 7.4	

C: id4	

D: I don’t know	


Point	


x 0.0 

y 0.0 

z 0.0 

id4	


id4	


id4	


Methods: Functions Tied to Objects	


•  Method: function tied to object	

§  Method call looks like a function 

call preceded by a variable name: 
⟨variable⟩.⟨method⟩(⟨arguments⟩)

§  Example: p.distanceFromOrigin()	

§  Example: p.distanceTo(q)	


•  Name resolution	

§  ⟨object⟩.⟨name⟩ means “go to 
object and look for something 
called name.”	


§  Python looks first in the object’s 
folder, then in the object’s class	


Point	


x 5.0 

y 2.0 

z 3.0 

id3	


__init__(x, y, z)	

distanceFromOrigin()	

distanceTo(other)	


Point	


p id3 

Surprise: All Values are in Objects!	


•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 2.5
>>> id(x)

•  But they are special	

§  They are immutable���

(contents cannot change)	

§  Distinction between value 

and identity is immaterial	

§  So we can ignore the folder	
 2.5	
x	


float	


2.5 

id5	


id5	
x	


includes strings	


Strings Have Methods Too	


•  We have seen expressions 
like s.index('a')

•  Now we can recognize 
them as method calls	


•  String methods do not 
change the string	

§  Can’t: strings immutable	

§  “Modifications” made by 

returning a new string	

§  s.replace('o','uh') evaluates 

to 'Helluh Wuhld!' but s is 
still 'Hello World'

“foo”	
x	


str	


“foo” 

id6	


id6	
x	


index(substring)	

replace(old, new)	

…	


str	


Class Objects are Mutable	


•  Unlike int, str, etc., objects 
of class type (and some 
others) are mutable	

§  You can change them	

§  Methods can have effects 

besides their return value	

•  Example:	


f = open('jabber.txt')
s = f.read()
f.close()

•  Example: p.projectToFloor()

file	

id6	
 f id6 

name,	

position,	

state, …	


close()	

read([size])	

readline(), …	


file	


Opens a file 
on your hard 
disk, returns a 
file object you 
can read from	


http://docs.python.org/2/library/stdtypes.html#file-objects	


Where To From Here?	


•  Right now, just try to understand objects	

§ All Python programs use objects	

§ Most small programs use objects of classes that are 

defined by the Standard Library or other libraries.	

•  OO Programming is about creating classes	


§  Eventually you will make your own classes	

§  Classes are the primary tool for organizing more 

complex Python programs	

§  But we need to learn other basics first	



