
CS1110 note-taking aid, Thu Jan 31, 2013	

1	

Announcements	

Unable to enroll because of
section conflicts? Check Student
Center regularly to see if space
opens up.	

	

Install Python, Komodo Edit, and
the "Run Python Module"
button. The first assignment is
coming next week.	

	

No reading for next time: Our
treatment of objects differs
significantly from the book's. 	

 	

	

Announcements

Slides by D. Gries, L. Lee, S. Marschner, W. White	

iClickers that need
to be registered: See
Texts on webpage for
instructions. 	

#3667FEAF	

http://www.cs.cornell.edu/courses/cs1110/2013sp	

handouts posted ~1 day before
class	

actual lecture slides,
code posted after class	

labs posted ~Monday	

source of this
screenshot	

video of 11:15
lecture	

	

Users Want Functions	

Given: info contains a comma-separated string with last name, difficulty,
execution, and penalty.	

§  Example: info = 'RAISMAN, 6.7, 9.1,0'	

Goal: store the difficulty as a string, with no extra spaces or punctuation, in
variable df	

Users (including other programmers) want to write things like:	

	

raisman_df = gym.dscore('RAISMAN, 6.7, 9.1,0')

ponor_df = gym.dscore(' PONOR , 6.2 , 9.0 , 0')

The function dscore is in module (file) gym. 	

When called, it returns a value that the user can utilize as they wish.	

def dscore(info):

	

 	

 """Returns: difficulty score, as a float, represented in info.

 Precondition: info is a string with commas separating its

 component values: last name, difficulty score, execution

 score, penalty."""

 startcomma = info.index(',')

 tail = info[startcomma+1:] # part of info after 1st ,

 endcomma = tail.index(',')

 return float(tail[:endcomma].strip())

Anatomy of a Function Definition (I)	

header	

In file gym, we define dscore as follows.	

	

declaration of parameter (variable) named "info"	

	

body	

(indented)	

	

specification	

	

after return, the
expression whose
value results from
the function call	

	

Parameters: Variables Holding Input Values	

 """Returns: difficulty score, as a float, represented in info.

 Precondition: info is a string with commas separating its

 component values: last name, difficulty score, execution

 score, penalty."""

 startcomma = info.index(',')

 tail = info[startcomma+1:] # part of info after 1st ,

 endcomma = tail.index(',')

 return float(tail[:endcomma].strip())

def dscore(info):

	

 	

When you call a function, you supply
arguments: input values.	

 ex: gym.dscore('Raisman, 6.7, 9, 0')

These values are stored in the function's
corresponding parameters: variables used
within the function.	

	

	

	

	

Anatomy of a Specification: ���
User Documentation	

def dscore(info):

 """Returns: difficulty score, as a float, represented in info.

 Precondition: info is a string with commas separating its

 component values: last name, difficulty score, execution

 score, penalty."""

 startcomma = info.index(',')

 tail = info[startcomma+1:] # part of info after 1st ,

 […]

Single summary line, followed by blank line.	

(More detail can be added in separate paragraphs)	

Precondition: assumptions about the argument values	

CS1110 note-taking aid, Thu Jan 31, 2013	

2	

A Specification is a Contract	

Preconditions are a promise that:	

§  if the arguments satisfy the preconditions, the function

works as described in the specification;	

§  but, if the user's arguments violate the precondition, all

bets are off.	

So write these contracts carefully! 	

Common sources of software errors:	

§  Preconditions not documented properly	

§  Functions used in ways that violate preconditions	

>>> gym.dscore('R; 6.7, 9,0')
"I'm sorry Dave, I'm afraid I can't do that"

Testing Program "Correctness"	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

def number_vowels(w):

 """Returns: number of vowels in word w.

 Precondition: w string w/ at least one letter and only letters"""

 pass # nothing here yet!

	

	

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body. 	

Organizing Test Cases: Unit Tests	

•  A unit test is a module that tests another module	

§  It imports the other module (so it can access it)	

§  It imports the cunittest module (provided by us)	

§  It defines one or more test procedures	

•  Evaluate the function(s) on the test cases	

•  Compare the result to the expected value	

§  It has special code that calls the test procedures	

•  The test procedures use the cunittest function	

def assert_equals(expected,received):

 """Quit program if expected and received differ"""

Example unit test: last_name_first(n)

test procedure

def test_last_name_first():

 """Test procedure for last_name_first(n)"""

 unittest.assert_equals('White, Walker',

 last_name_first('Walker White'))

 unittest.assert_equals('White, Walker',

 last_name_first('Walker White'))

Application code

if __name__ == '__main__':

 test_last_name_first()

 print 'Module name is working correctly'

Expected is the
literal value.	

Message will print
out only if no errors.	

Quits Python
if not equal	

Received is the
expression.	

Aside: Application Code	

Applications often have “application code”	

§  Code not executed if imported; only if run as app/

Komodo "Run Python Module" button	

§  Indented under the line 	

 if __name__ == '__main__':

Debugging with Print Statements	

Print statements expose the values of variables, so
you can check if they have the value you expect.	

	

print 'in this solution, df is :' + df + ':'

Don't leave these in your finished code! They
reduce readability.	

	

