
Announcements	

Lecture 2: Variables; Strings	

CS1110

Problem emails ���
(as of Sunday)	

disabled/discontinued/not found:���
jason.luu719@yahoo.com�
jamiechowsl@gmail.com

mailbox full and can’t accept
messages:���
xh89@cornell.edu�
ars279@cornell.edu

Added late & missed lab?���
	

Download the lab handout from
the course website and complete
it on your own this week. 	

	

Then, bring it to next week’s lab
and ask a TA to check it in.	

	

Catch up on lectures using
VideoNote: see course website.

Assignments	

•  Major portion (40%) of your final grade	

§  Larger projects due every two weeks	

•  First assignment requires mastery	

§  Submit, get feedback, resubmit, … until correct 	

§  Everyone eventually scores 10/10	

•  Later assignments are designed to be fun	

§  Examples: graphics, image manipulation	

§  Final project is a Breakout game project	

•  Submitted via Course Management System (CMS)	

§  Visit cms.csuglab.cornell.edu to check you are enrolled	

Participation: 2% of Final Grade	

•  iClickers. In lecture questions	

§  Essentially a form of “stealth attendance”	

§ Must answer 75% of questions for credit	

§  But actual answers are not graded	

•  Surveys. What do you think of the class?	

§  This is the first year teaching Python	

§ Want data on who you are/why taking course?	

§ What do you like/dislike about assignments?	

§ Must answer 75% of surveys for full credit	

Things to Do Before Next Class	

1.  Register your iClicker	

§  Does not count for ���

grade if not registered	

2.  Enroll in Piazza	

3.  Sign into CMS	

§  Quiz: About the Course	

§  Complete Survey 0	

4.  Read the textbook	

§  Chapter 1 (browse)	

§  Chapter 2 (in detail)	

•  Everything is on website!	

§  Piazza instructions	

§  Class announcements	

§  Consultant calendar	

§  Reading schedule	

§  Lecture slides	

§  Exam dates	

•  Check it regularly:	

§  www.cs.cornell.edu/

courses/cs1110/2013sp/	

Helping You Succeed: Other Resources	

•  Consultants. ACCEL Lab Green Room	

§  Daily office hours (see website) with consultants	

§  Very useful when working on assignments	

•  AEW Workshops. Additional discussion course	

§  Runs parallel to this class – completely optional	

§  See website; talk to advisors in Olin 167.	

•  Piazza. Online forum to ask and answer questions	

§  Go here first before sending question in e-mail 	

•  Office Hours. Talk to the professors!	

§  Available in Thurston 102 between lectures	

	

iClickers	

•  Have you registered your iclicker?	

•  If not, visit	

§  atcsupport.cit.cornell.edu/pollsrvc/	

•  Instructions on iclickers can be found here:	

§  atc.cit.cornell.edu/course/polling/clickers.cfm	

•  Find these links on the course webpage	

§  Click “Texts” 	

§  Scroll down on the page that opens.	

Warm-Up: Using Python	

•  How do you plan to use Python?	

A.  I want to work mainly in the ACCEL lab	

B.  I want to use my own Windows computer	

C.  I want to use my own Macintosh computer	

D.  I want to use my own Linux computer	

E.  I will use whatever I can get my hands on	

Type: Set of values and the operations on them	

•  Type int:	

§  Values: integers 	

§  Ops: +, –, *, /, %, **, …	

•  Type float:	

§  Values: real numbers	

§  Ops: +, –, *, /, **, …	

•  Type bool:	

§  Values: True and False	

§  Ops: not, and, or	

•  Type str:	

§  Values: string literals	

•  Double quotes: "abc"
•  Single quotes: 'abc'

§  Ops: + (concatenation)	

Will see more types ���
in a few weeks	

Operator Precedence	

•  What is the difference between the following?	

§  2*(1+3)	

§  2*1 + 3	

•  Operations are performed in a set order	

§  Parentheses make the order explicit	

§ What happens when there are no parentheses?	

•  Operator Precedence: The fixed order Python
processes operators in absence of parentheses	

add, then multiply	

multiply, then add	

Precedence of Python Operators	

•  Exponentiation: ** 	

•  Unary operators: + – 	

•  Binary arithmetic: * / %

•  Binary arithmetic: + –

•  Comparisons: < > <= >= 	

•  Equality relations: == !=

•  Logical not	

•  Logical and	

•  Logical or	

•  Precedence goes downwards	

§  Parentheses highest	

§  Logical ops lowest	

•  Same line = same precedence	

§  Read “ties” left to right (for

all but **)	

§  Example: 1/2*3 is (1/2)*3

• Section 2.7 in your text	

• See website for more info	

• Major portion of Lab 1	

Variables (Section 2.1)	

•  A variable	

§  is a named memory location (box)	

§  contains a value (in the box)	

§  can be used in expressions	

•  Examples:	

	
 5	
x	
 Variable x, with value 5 (of type int)	

20.1	
area	
 Variable area, w/ value 20.1 (of type float) 	

Variable names
must start with a
letter (or _).	

The type belongs
to the value, not
to the variable.	

The value in the box is
then used in evaluating
the expression.	

Variables and Assignment Statements	

•  Variables are created by assignment statements	

§  Create a new variable name and give it a value	

	
x = 5

•  This is a statement, not an expression	

§  Tells the computer to DO something (not give a value)	

§  Typing it into >>> gets no response (but it is working)	

•  Assignment statements can have expressions in them	

§  These expressions can even have variables in them	

	
x = x + 2

	

the value	

the variable	

the expression	

the variable	

x	
 5	

Two steps to execute an assignment:	

1.  evaluate the expression on the right	

2.  store the result in the variable on the left	

“gets”	

Execute the statement: x = x + 2

•  Draw variable x on piece of paper:	

•  Step 1: evaluate the expression x + 2
§  For x, use the value in variable x	

§  Write the expression somewhere on your paper	

•  Step 2: Store the value of the expression in x	

§  Cross off the old value in the box	

§  Write the new value in the box for x	

•  Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.	

5	
x	
 7	

A: I did it correctly!	

B: I drew another box named x	

C: I did something else	

D: I did nothing—just watched	
✗	

Execute the statement: x = 3. * x + 1.

•  You have this:	

•  Execute this command:	

§  Step 1: Evaluate the expression 3. * x + 1.
§  Step 2: Store its value in x	

•  Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.	

5	
x	
 7	

A: I did it correctly!	

B: I drew another box named x	

C: I did something else	

D: I did nothing –just watched	
✗	
 22.	
✗	

Execute the statement: x = 3. * x + 1.	

•  You now have this:	

•  The command:	

§  Step 1: Evaluate the expression 3. * x + 1.
§  Step 2: Store its value in x	

•  This is how you execute an assignment statement	

§  Performing it is called executing the command	

§  Command requires both evaluate AND store to be correct	

§  Important mental model for understanding Python	

	

5	
x	
 7	
✗	
 22.	
✗	

Exercise: Understanding Assignment	

•  Add another variable, interestRate, to get this:	

•  Execute this assignment:	

	
 interestRate = x / interestRate
•  Check to see whether you did the same thing as your

neighbor, discuss it if you did something different.	

	

5	
x	
 7	
✗	
 22.	
✗	
 4	
interestRate	
 5.5	

A: I did it correctly!	

B: I drew another box called “interestRate”	

C: I stored the value in the box for x	

D: I thought it would use int division	

E: I did something else (or nothing)	

✗	

4	
✗	

Exercise: Understanding Assignment	

•  You now have this:	

•  Execute this assignment:	

	
 intrestRate = x + interestRate
•  Check to see whether you did the same thing as your

neighbor, discuss it if you did something different.	

	

5	
x	
 7	
✗	
 22.	
✗	
 interestRate	
 5.5	

A: I did it correctly!	

B: I stored the value in “interestRate”	

C: I stored the value in x	

D: I did something else (or nothing)	

27.5	
intrestRate	

Spelling mistakes in
Python are bad!!	

Dynamic Typing	

•  Python is a dynamically typed language	

§  Variables can hold values of any type	

§  Variables can hold different types at different times	

§  Use type(x) to find out the type of the value in x	

§  Use names of types for conversion, comparison	

•  The following is acceptable in Python:	

>>> x = 1
>>> x = x / 2.0

•  Alternative is a statically typed language (e.g. Java)	

§  Each variable restricted to values of just one type	

ç x contains an int value 	

ç x now contains a float value 	

type(x) == int
x = float(x)
type(x) == float

String: Text as a Value	

•  String are quoted characters	

§  'abc d' (Python prefers)	

§  "abc d" (most languages)	

•  How to write quotes in quotes?	

§  Delineate with “other quote”	

§  Example: " ' " or ' " '
§  What if need both " and ' ?	

•  Solution: escape characters	

§  Format: \ + letter	

§  Special or invisible chars	

Char	
 Meaning	

\' single quote	

\" double quote	

\n new line	

\t tab	

\\ backslash	

Type: str

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[3:6]?	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'lo a'
B: 'lo'	

C: 'lo '	

D: 'o '	

E: I do not know	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[3:6]?	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'lo a'
B: 'lo'	

C: 'lo '	

D: 'o '	

E: I do not know	

CORRECT	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[:4]?	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'o all'
B: 'Hello'	

C: 'Hell'	

D: Error!	

E: I do not know	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[:4]?	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'o all'
B: 'Hello'	

C: 'Hell'	

D: Error!	

E: I do not know	

CORRECT	

Strings have many other powers	

s = 'abracadabra'
'a' in s == True
'cad' in s == True
'foo' in s == False
s.index('a') == 0
s.index('rac') == 2
s.count('a') == 5
len(s) == 11
s.strip('a') == ‘bracadabr’
' cs1110 '.strip() == 'cs1110'

s1 in s2 asks whether s1 is a
substring of s2. Result is
type bool.s1.index(s2) returns the

index of the first
occurrence of s2 in s1.

s1.count(s2) returns the
number of occurrences of
s2 in s1.

len(s) returns the number
of characters in s.

s1.strip(s2) returns a copy
of s1 with characters in s2
removed from the ends.

Just s1.strip() defaults to
removing white space from
the ends.

More (too much!) information in Python
documentation on www.python.org (see
Library Reference, built-in types)	

