CS1110

Lecture 2: Variables; Strings

Problem emails
(as of Sunday)

disabled/discontinued/not found:
jason.luu719@yahoo.com
jamiechowsl@gmail.com

mailbox full and can’t accept
messages:

xh89@cornell.edu
arsa79@cornell.edu

-
Added late & missed lab?

Download the lab handout from
the course website and complete
it on your own this week.

Then, bring it to next week’s lab
and ask a TA to check it in.

Catch up on lectures using
VideoNote: see course website.

-

~

Assignments

Major portion (40%) of your final grade

= Larger projects due every two weeks

First assignment requires mastery
= Submit, get feedback, resubmit, ... until correct

= Everyone eventually scores 10/10

Later assignments are designed to be fun
= Examples: graphics, image manipulation
* Final project is a Breakout game project

Submitted via Course Management System (CMS)
= Visit ems.csuglab.cornell.edu to check you are enrolled

Participation: 2% of Final Grade

* iClickers. In lecture questions
= Essentially a form of “stealth attendance”
= Must answer 75% of questions for credit

= But actual answers are not graded

* Surveys. What do you think of the class?
= This 1s the first year teaching Python
= Want data on who you are/why taking course?
= What do you like/dislike about assignments?
= Must answer 75% of surveys for full credit

Things to Do Before Next Class

4.

Register your 1Clicker

= Does not count for
grade 1if not registered

Enroll in Piazza

Sign into CMS

[| ﬂ 1'7 /\]/\n fflf\o (Conrce

A\ A VAV S We) g

] Conanlete Qnrxrcnr A

S—~UL ltll\./ LG WJ Ul \./J \ V4

Read the textbook

= Chapter 1 (browse)
= Chapter 2 (in detail)

* Everything 1s on website!

Piazza instructions
Class announcements
Consultant calendar
Reading schedule
Lecture slides

Exam dates

* Check 1t regularly:

www.cs.cornell.edu/
courses/cs1110/2013sp/

Helping You Succeed: Other Resources

Consultants. ACCEL Lab Green Room

= Daily office hours (see website) with consultants

= Very useful when working on assignments

AEW Workshops. Additional discussion course

= Runs parallel to this class — completely optional
= See website; talk to advisors in Olin 167.

Piazza. Online forum to ask and answer questions

* Go here first before sending question in e-mail

Office Hours. Talk to the professors!

= Available in Thurston 102 between lectures

iClickers

Have you registered your iclicker?
If not, visit
= atcsupport.cit.cornell.edu/pollsrvc/

Instructions on iclickers can be found here:

= atc.cit.cornell.edu/course/polling/clickers.ctm

Find these links on the course webpage
= Click “Texts”

= Scroll down on the page that opens.

Warm-Up: Using Python

 How do you plan to use Python?

A. I want to work mainly in the ACCEL lab
B. I want to use my own Windows computer
C. I want to use my own Macintosh computer

D. I want to use my own Linux computer

E. I will use whatever I can get my hands on

Type: Set of values and the operations on them

e Type int: e Type str:
= Values: integers = Values: string literals
= Ops: +,—, *,/,%, **, ... e Double quotes: "abc"
o Type float: e Single quotes: 'abc'

* Values: real numbers " Ops: + (concatenation)

= Ops: +,—, %, /, %% ...

* Type bool: Will see more types
* Values: True and False in a few weeks

= Ops: not, and, or

Operator Precedence

* What 1s the difference between the following?
= 2%(14+3) add, then multiply
= D*F] +3 multiply, then add

* Operations are performed in a set order
= Parentheses make the order explicit

= What happens when there are no parentheses?

* Operator Precedence: The fixed order Python
processes operators in absence of parentheses

Precedence of Python Operators

Exponentiation: ** * Precedence goes downwards

Unary operators: + — = Parentheses highest

= Logical ops lowest

. o S e X 0
Binary arithmetic: * / % e Same line = same precedence

Binary arithmetic: + - = Read “ties” left to right (for
all but **)

Comparisons: < > <= >=
patt = Example: 1/2*31s (1/2)*3

Equality relations: == |=

Logical not Section 2.7 1n your text

Logical and * See website for more info

e Major portion of Lab 1

Logical or

Variables (Section 2.1)

A variable

* is a named memory location (box)

= contains a value (in the box) | The value in the box is

then used in evaluating

= can be used 1n expressions the expression.

¢ ExampleS: The type belongs

to the value, not
to the variable.

Variable names
must start with a X |5
letter (or _).

Variable x, with value 5 (of type int)

area |20.1 | Variable area, w/ value 20.1 (of type float)

Variables and Assignment Statements

e Variables are created by assignment statements

Create a new variable name and give it a value
the value

X=05
-

the variable

X |5

e This 1s a statement, not an expression

= Tells the computer to DO something (not give a value)

= Typing it into >>> gets no response (but it is working)

* Assignment statements can have expressions in them

= These expressions can even have variables in them

__— the expression
X=X+2
-

the variable

-

Two steps to execute an assignment:
1. evaluate the expression on the right

~

2. store the result in the variable on the left

-

)

Execute the statement: x =x + 3

A: T did 1t correctly!

o) Draw Variable X On piece Of pa B: I drew another box named x
C: I did something else

x | X7 D: I did nothing— just watched

e Step 1: evaluate the expression X + 2
= For x, use the value in variable x
= Write the expression somewhere on your paper
* Step 2: Store the value of the expression in x
= Cross off the old value in the box
= Write the new value in the box for x

* Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.

Execute the statement: x=38. * x + 1.

A: T did 1t correctly!
e You have this: B: I drew another box named x
C: I did something else
x XX 22. D: I did nothing —just watched

e Execute this command:
= Step 1: Evaluate the expression 3. * x + 1.

= Step 2: Store its value in x

* Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.

Execute the statement: x=38. * x + 1.

* You now have this:
x XX 22.

e The command:

= Step 1: Evaluate the expression 3. * x + 1.
= Step 2: Store its value in x

* This 1s how you execute an assignment statement

* Performing it is called executing the command
* Command requires both evaluate AND store to be correct

* Important mental model for understanding Python

Exercise: Understanding Assignment

* Add another variable, interestRate, to get this:

x XX 22.| interestRate |[X 5.5

* Execute this assignment:

interestRate = x / interestRate

* Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.

A: I did it correctly!
B: I drew another box called “interestRate”

C: I stored the value 1n the box for x
D: I thought it would use int division
E: I did something else (or nothing)

Exercise: Understanding Assignment

* You now have this:

x XX 22.| interestRate |[X 5.5 intrestRate | 27.5

* Execute this assignment:

intrestRate = x + interestRate

* Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.

-

.

Spelling mistakes in
Python are bad!!

~N

)

A: I did it correctly!
B: I stored the value in “interestRate

C: I stored the value 1n x
D: I did something else (or nothing)

29

Dynamic Typing

e Python 1s a dynamically typed language
= Variables can hold values of any type
" Variables can hold different types at different times
= Use type(x) to find out the type of the value in x

~
= Use names of types for conversion, comparison typeéX)tT)int
X = loau(X
* The following 1s acceptable in Python: bypo(e) == o

>>>x =1 € x contains an int value
>>>x=x/2.0 € x now contains a float value

e Alternative is a statically typed language (e.g. Java)

= Each variable restricted to values of just one type

String: Text as a Value

e String are quoted characters

= '‘abc d' (Python prefers) Type: str

= "abc d" (most languages)

» How to write quotes in quotes?

= Delineate with “other quote™ single quote

\" double quote

= Example: or
* What if need both " and ' ?

\n new line
\t tab

* Solution: escape characters \\ backslash

= Format: \ + letter

= Special or invisible chars

String are Indexed

e g="gbc d' e g ="Hello all'
01 2 3 4 01 2 3 4 5 6 7
albl|c d Hilell]l]o all

e Access characters with [] ¢ What 1s s[3:6]?

= g[0] 1s 'a’
= g[4]is 'd’ A:'lo a
- B: 'lo'
= g[B] causes an error
_ . C:.'lo’
= g[0:2] 1s 'ab' (excludes ¢) D0
= g[:]is'cd E: I do not know

e Called “string slicing”

String are Indexed

e s="abcd e s="Hello all
O 1 2 3 4 O 1 2 3 4 5 6 7
alb|c d Hlie|l]|l|o all
e Access characters with [] ¢ What 1s s[3:6]?
= g[0]1s 'a'
= g[4]is 'd’ A:'lo a
= g[b] causes an error B:1o
S C:'lo' CORRECT
= g[0:2] 1s 'ab' (excludes ¢) D0
= g[lR:]1s e d E: I do not know
e (Called “string slicing”

String are Indexed

e g="gbc d'

01 2 3 4

alb

C

d

e g ="Hello all'
0 1 2 3 45

Hiell|l]o

N e

]~

e Access characters with [] ¢ What 1s s[:4]?

= g[0] 1s 'a’
= g[4]is 'd’ A:'oall
- B: 'Hello'
= g[5] causes an error
_ . C: 'Hell'
= g[0:2] 1s 'ab' (excludes ¢) D: Error!
= g[R:]1s'cd E: I do not know
e (Called “string slicing”

String are Indexed

e s="abcd e s="Hello all

01 2 3 4 01 2 3 4 5 6 7 8

alblc d Hlie|l]|l|o allll
e Access characters with [] ¢ What 1s s[:4]?

= g[0]1s 'a'

= g[4]is 'd’ A:'oall

= g[b] causes an error B:'Hello

o C: 'Hell' CORRECT

= g[0:2] 1s 'ab' (excludes ¢) D: Error!

= s[R:]1s'c d’ E: I do not know
e (Called “string slicing”

Strings have many other powers

s, in s, asks whether s, is a

— I 1
§ = ‘abracadabra substring of s,. Result 1s

Ial 3
a' in s == True
s,.index(s,) returns the | L. L LT
index of the first cad' in s == True
occurrence of s, in §,. 'foo' in s == False
: Ial —_—
s.%ndex('a,) ' s,.count(s,) returns the
len(s) returns the number s.index('rac') == number of occurrences of
of characters in s. s.count('a’) == S, 1n s;.
len(s) == 11
s,.8trip(s,) returns a copy s.strip(‘a’) == ‘bracadabr’
of s, with characters in s, ' ¢s1110 '.strip() == 'es1110'
removed from the ends. ~
-~ ™ Just s,.strip() defaults to
More (too much!) information in Python removing white space from
documentation on www.python.org (see the ends.
Library Reference, built-in types) /

- /

