
AEW Workshops	

Additional
discussion courses	

Run parallel to this
class—completely

optional	

See website; talk to
advisors in Olin 167.	

Lecture 1: Course Overview; Types & Expressions	

CS1110

Bookmark this: www.cs.cornell.edu/courses/cs1110/2013sp/

Announcements	

CS 1110 Spring 2013: Lee and Marschner	

•  Outcomes:	

§  Fluency in (Python) procedural programming	

•  Usage of assignments, conditionals, and loops	

•  Ability to design Python modules and programs	

§ Competency in object-oriented programming	

•  Ability to write programs using objects and classes.	

§ Knowledge of searching and sorting algorithms	

•  Knowledge of basics of vector computation	

•  Website:	

§ www.cs.cornell.edu/courses/cs1110/2013sp/	

1/21/13	
 Overview; Types & Expressions	
 2	

Interlude: Why learn to program? ���
(which is subtly distinct from, although a core part of, computer science itself) 	

3	

From the Economist: “Teach computing, not Word”	

http://www.economist.com/blogs/babbage/2010/08/computing_schools	

Like philosophy, computing qua computing is worth teaching
less for the subject matter itself and more for the habits of
mind that studying it encourages. 	

	

The best way to encourage interest in computing in school is
to ditch the vocational stuff that strangles the subject
currently, give the kids a simple programming language, and
then get out of the way and let them experiment. For some, at
least, it could be the start of a life-long love affair.	

Interlude, continued	

4	

That, for me, sums up the seductive intellectual core of
computers and computer programming: here is a magic black
box. You can tell it to do whatever you want, within a certain
set of rules, and it will do it; within the confines of the box you
are more or less God, your powers limited only by your
imagination. But the price of that power is strict discipline: you
have to really know what you want, and you have to be able to
express it clearly in a formal, structured way that leaves no
room for the fuzzy thinking and ambiguity found everywhere
else in life…	

The sense of freedom on offer - the ability to make the
machine dance to any tune you care to play - is thrilling. 	

Introducing your profs…Prof. Marschner	

•  Sc.B. Brown ’93, Ph.D. Cornell ’98	

•  Research area: computer graphics	

•  Specialty: realistic digital characters ���

(skin, hair, cloth, …)	

•  Most skin and hair in movies ���

uses his techniques	

•  Technical Oscar (1994)���
for methods of simulating���
light scattering in���
translucent materials	

1/21/13	
 Overview; Types & Expressions	
 5	

Introducing your profs…Prof. Lee	

•  A.B. Cornell ’93, Ph.D. Harvard ’97	

•  Research area: artificial intelligence, specifically “getting

computers to understand human language(s)”	

	

1/21/13	
 Overview; Types & Expressions	
 6	

§  Can computers learn how to paraphrase our writing?���
—The New York Times (2003)	

§  What kind of language ���
distinguishes memorable ���
movie quotes? ���
—NPR’s All Things Considered, ���
The Today Show (2012)	

	

Why Python?	

•  Python is easy for beginners	

§  Little to learn before you start “doing”	

§ Designed with “rapid prototyping” in mind	

•  Python is highly relevant to non-CS majors	

§ NumPy and SciPy heavily used by scientists	

•  Python is a modern language	

§  Popular for web applications (e.g. Facebook apps)	

§ Also applicable to mobile app development	

1/21/13	
 Overview; Types & Expressions	
 7	

Intro Programming Classes Compared	

CS 1110: Python	

•  No prior programming
experience necessary	

•  No calculus	

•  Non-numerical problems	

•  More about software design	

•  Focus is on training future

computer scientists	

CS 1112: Matlab	

•  No prior programming
experience necessary	

•  One semester of calculus	

•  Engineering-type problems	

•  Less about software design	

•  Focus is on training future

engineers that compute	

8	
1/21/13	
 Overview; Types & Expressions	

But either course serves as ���
a pre-requisite to CS 2110	

Class Structure	

•  Lectures. Every Tuesday/Thursday 	

§  Not just slides; interactive demos almost every lecture	

§  You may attend either Lecture section (9 or 11)	

§  Semi-Mandatory. Participation grade from iClickers	

•  Section/labs. ACCEL Lab, Carpenter 2nd floor 	

§  Guided exercises with TAs and consultants helping out	

§  Please attend the section you registered for	

•  Tuesday: 	
12:20, 1:25, 2:30, 3:35	

•  Wednesday: 	
12:20, 1:25, 2:30, 3:35	

§  Mandatory. Missing more than 2 lowers your final grade	

9	
1/21/13	
 Overview; Types & Expressions	

ACCEL Labs	

1/21/13	
 Overview; Types & Expressions	
 10	

• Enter from front	

• Walk to staircase on left	

• Go up the stairs	

	

Class Materials	

•  Textbook. Think Python by Allen Downey	

§  Supplemental text; does not replace lecture	

§  Hardbound copies for sale in Campus Store	

§  Book available for free as PDF or eBook	

•  iClicker. Acquire one by next Tuesday	

§  Will periodically ask questions during lecture	

§  Used to judge class understanding	

§  Will get credit for answering—even if wrong	

•  Python. Necessary if you want to use own computer	

§  See course website for how to install the software	

1/21/13	
 Overview; Types & Expressions	
 11	

Academic Integrity	

•  Do not cheat, in any way, shape, or form	

•  Will be very explicit about this throughout course	

•  Pay attention to all assignment instructions	

•  In return, we try to be fair about amount of work,
grading the work, and giving you a course grade	

•  See website for more information	

1/21/13	
 Overview; Types & Expressions	
 12	

CS 1110: A Work in Progress	

•  Switched from Java to Python last semester	

•  First semester Python is (still) new to us	

§ We are (still) learning what students find easy/hard	

§ We might “overshoot” or “undershoot” this semester	

•  Treat all assignments as a dialogue	

§  If something seems too hard, tell someone!���

(instructor, TA, consultant)	

§ We may adjust assignments, labs, lectures to adapt	

•  We want you to succeed, not drop out	

1/21/13	
 Overview; Types & Expressions	
 13	

Getting Started with Python	

•  Designed to be used from ���
the “command line”	

§  OS X/Linux: Terminal	

§  Windows: Command Prompt	

§  Purpose of the first lab	

•  Once installed type “python”	

§  Starts an interactive shell	

§  Type commands at >>>	

§  Shell responds to commands	

•  Can use it like a calculator	

§  Use to evaluate expressions	

Overview; Types & Expressions	
 14	

This class uses Python 2.7.2	

 • Python 3 is too cutting edge	

 • Minimal software support	

1/21/13	

The Basics	

1/21/13	
 Overview; Types & Expressions	
 15	

12.345	

42	

“Hello!”	

integer	

Values	

Types	

Expressions	

float (real number)	

string (of characters)	

34 * (23 + 14)

"Hel" + "lo!"

1.0 / 3.0

Representing Values	

•  Everything on a computer reduces to numbers	

§  Letters represented by numbers (ASCII codes)	

§  Pixel colors are three numbers (red, blue, green)	

§  So how can Python tell all these numbers apart?	

•  Type: ���
A set of values and the operations on them.	

§  Examples of operations: +, –, /, * 	

§  The meaning of these depends on the type	

1/21/13	
 Overview; Types & Expressions	
 16	

Memorize this definition!	

Write it down several times.	

Expressions vs. Statements	

Expression	

•  Represents something	

§  Python evaluates it	

§  End result is a value	

•  Examples:	

§  2.3
§  (3 * 7 + 2) * 0.1

Statement	

•  Does something	

§  Python executes it	

§  Need not result in a value	

•  Examples:	

§  print "Hello"
§  import sys

1/21/13	
 Overview; Types & Expressions	
 17	

Literal	

An expression with four
literals and some operators	

Type: int	

•  Type int (integer):	

§  values: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …	

•  Integer literals look like this: 1, 45, 43028030 (no commas or periods)	

§  operations: +, –, *, /, **, unary –

•  Principle: operations on int values must yield an int	

§  Example: 1 / 2 rounds result down to 0	

•  Companion operation: % (remainder)	

•  7 % 3 evaluates to 1, remainder when dividing 7 by 3	

§  Operator / is not an int operation in Python 3 (use // instead)	

1/21/13	
 Overview; Types & Expressions	
 18	

multiply	
 to power of	

Type: float	

•  Type float (floating point):	

§  values: (approximations of) real numbers	

•  In Python a number with a “.” is a float literal (e.g. 2.0)	

•  Without a decimal a number is an int literal (e.g. 2)	

§  operations: +, –, *, /, **, unary –	

•  But meaning is different for floats	

•  Example: 1.0/2.0 evaluates to 0.5 	
	

•  Exponent notation is useful for large (or small) values	

§  –22.51e6 is –22.51 * 106 or –22510000	

§  22.51e–6 is 22.51 * 10–6 or 0.00002251	

	

1/21/13	
 Overview; Types & Expressions	
 19	

A second kind
of float literal	

Floats Have Finite Precision	

•  Python stores floats as binary fractions	

§  Integer mantissa times a power of 2	

§  Example: 1.25 is 10 * 2–3	

•  Impossible to write most real numbers this way exactly	

§  Similar to problem of writing 1/3 with decimals	

§  Python chooses the closest binary fraction it can	

•  This approximation results in representation error	

§  When combined in expressions, the error can get worse	

§  Example: type 0.1 + 0.2 at the prompt >>>	

1/21/13	
 Overview; Types & Expressions	
 20	

mantissa	
 exponent	

Type: str	

•  Type str (string of characters):	

§  values: any sequence of characters	

§  operation(s): + (catenation, or concatenation)	

•  String literal: sequence of characters in quotes	

§  Double quotes: " abcex3$g<&" or "Hello World!"
§  Single quotes: 'Hello World!'	

•  Concatenation can only apply to Strings.	

§  "ab" + "cd" evaluates to "abcd"	

§  "ab" + 2 produces an error	

1/21/13	
 Overview; Types & Expressions	
 21	

Type: bool	

•  Type bool (Boolean logical value): 	

§  values: True, False	

•  Boolean literals are just True and False (have to be capitalized)	

§  operations: not, and, or	

•  not b: 	
 True if b is false and False if b is true	

•  b and c: True if both b and c are true; False otherwise	

•  b or c:	
 True if b is true or c is true; False otherwise 	

•  Often come from comparing int or float values	

§  Order comparison: 	
i < j 	
i <= j 	
i >= j 	
i > j	

§  Equality, inequality: 	
i == j 	
i != j	

1/21/13	
 Overview; Types & Expressions	
 22	

= means something else!	

Converting Values Between Types	

•  Basic form: type(value)
§  float(2) converts value 2 to type float (value now 2.0)	

§  int(2.6) converts value 2.6 to type int (value now 2)	

§  Explicit conversion is also called “casting”	

•  Narrow to wide: bool ⇒ int ⇒ float	

•  Widening. Python does automatically if needed	

§  Example: 1/2.0 evaluates to 0.5 (casts 1 to float)	

•  Narrowing. Python never does this automatically 	

§  Narrowing conversions cause information to be lost	

§  Example: float(int(2.6)) evaluates to 2.0	

	
1/21/13	
 Overview; Types & Expressions	
 23	

