
1	


CS 1110 Spring 2013: Lee and Marschner	


•  Outcomes:	

§  Fluency in (Python) procedural programming	


•  Usage of assignments, conditionals, and loops	

•  Ability to design Python modules and programs	


§ Competency in object-oriented programming	

•  Ability to write programs using objects and classes.	


§ Knowledge of searching and sorting algorithms	

•  Knowledge of basics of vector computation	


•  Website:	

§ www.cs.cornell.edu/courses/cs1110/2013sp/	


1	
Overview, Types & Expressions —by Gries, Lee, Marschner, White	


Class Structure	


•  Lectures.  Every Tuesday/Thursday 	

§  Not just slides; interactive demos almost every lecture	

§  You may attend either Lecture section (9 or 11)	

§  Semi-Mandatory. Participation grade from iClickers	


•  Section/labs.  ACCEL Lab, Carpenter 2nd floor 	

§  Guided exercises with TAs and consultants helping out	

§  Please attend the section you registered for	


•  Tuesday: 	
12:20, 1:25, 2:30, 3:35	

•  Wednesday: 	
12:20, 1:25, 2:30, 3:35	


§  Mandatory. Missing more than 2 lowers your final grade	


2	
Overview, Types & Expressions	


ACCEL Labs	


Overview, Types & Expressions	
 3	


• Enter from front	

• Walk to staircase on left	

• Go up the stairs	

	


Getting Started with Python	


•  Designed to be used from ���
the “command line”	

§  OS X/Linux: Terminal	

§  Windows: Command Prompt	

§  Purpose of the first lab	


•  Once installed type “python”	

§  Starts an interactive shell	

§  Type commands at >>>	

§  Shell responds to commands	


•  Can use it like a calculator	

§  Use to evaluate expressions	


Overview, Types & Expressions	
 4	


This class uses Python 2.7.2	

  •  Python 3 is too cutting edge	

  •  Minimal software support	


Representing Values	


•  Everything on a computer reduces to numbers	

§  Letters represented by numbers (ASCII codes)	

§  Pixel colors are three numbers (red, blue, green)	

§  So how can Python tell all these numbers apart?	


•  Type: ���
A set of values and the operations on them.	

§  Examples of operations: +, –, /,  * 	

§  The meaning of these depends on the type	


Overview, Types & Expressions	
 5	


Memorize this definition!	


Write it down several times.	


Expressions vs. Statements	


Expression	


•  Represents something	

§  Python evaluates it	

§  End result is a value	


•  Examples:	

§  2.3
§  (3 * 7 + 2) * 0.1

Statement	


•  Does something	

§  Python executes it	

§  Need not result in a value	


•  Examples:	

§  print “Hello”
§  import sys

Expressions, Types, & Variables	
 6	


Literal	


Expression with three 
literals and some operators	




2	


Type: int	


•  Type int (integer):	

§  values: …,  –3,  –2,  –1,  0,  1,  2,  3,  4,  5,  …	


•  Integer literals look like this: 1, 45, 43028030 (no commas or periods)	


§  operations: +,  –,  *,  /, **, unary –

•  Principle: operations on int values must yield an int	

§  Example: 1 / 2 rounds result down to 0	


•  Companion operation: % (remainder)	


•   7 % 3 evaluates to 1, remainder when dividing 7 by 3	


§  Operator / is not an int operation in Python 3 (use // instead)	

Overview, Types & Expressions	
 7	


multiply	
 to power of	


Type: float 	


•  Type float (floating point):	

§  values: (approximations of) real numbers	


•  In Python a number with a “.” is a float literal (e.g. 2.0)	

•  Without a decimal a number is an int literal (e.g. 2)	


§  operations: +,  –,  *,  /, **, unary –	

•  But meaning is different for floats	

•  Example: 1.0/2.0 evaluates to 0.5 	
	


•  Exponent notation is useful for large (or small) values	

§  –22.51e6   is   –22.51 * 106    or   –22510000	

§  22.51e–6   is     22.51 * 10–6   or   0.00002251	

	


Overview, Types & Expressions	
 8	

A second kind 
of float literal	


Floats Have Finite Precision	


•  Python stores floats as binary fractions	

§  Integer mantissa times a power of 2	

§  Example: 1.25   is   10 * 2–3	


•  Impossible to write most real numbers this way exactly	

§  Similar to problem of writing 1/3 with decimals	

§  Python chooses the closest binary fraction it can	


•  This approximation results in representation error	

§  When combined in expressions, the error can get worse	

§  Example: type 0.1 + 0.2 at the prompt >>>	


Overview, Types & Expressions	
 9	


mantissa	
 exponent	


Type: str	


•  Type String or str:	

§  values: any sequence of characters	

§  operation(s): + (catenation, or concatenation)	


•  String literal: sequence of characters in quotes	

§  Double quotes: " abcex3$g<&" or "Hello World!"
§  Single quotes: 'Hello World!'	


•  Concatenation can only apply to Strings.	

§  "ab" + "cd" evaluates to "abcd"	

§  "ab" + 2 produces an error	


Overview, Types & Expressions	
 10	


Type: bool	


•  Type boolean or bool: 	

§  values:  True, False	


•  Boolean literals are just True and False (have to be capitalized)	

§  operations: not, and, or	


•  not b: 	
   True if b is false and False if b is true	

•  b and c: True if both b and c are true; False otherwise	

•  b or c:	
   True if b is true or c is true; False otherwise                                               	


•  Often come from comparing int or float values	

§  Order comparison:     	
i < j    	
i <= j 	
i >= j 	
i >  j	

§  Equality, inequality: 	
i == j  	
i != j	


Overview, Types & Expressions	
 11	


= means something else!	


Converting Values Between Types	


•  Basic form: type(value)
§  float(2) converts value 2 to type float (value now 2.0)	

§  int(2.6) converts value 2.6 to type int (value now 2)	

§  Explicit conversion is also called “casting”	


•  Narrow to wide: bool ⇒ int ⇒ float	

•  Widening.  Python does automatically if needed	


§  Example: 1/2.0 evaluates to 0.5 (casts 1 to float)	

•  Narrowing. Python never does this automatically 	


§  Narrowing conversions cause information to be lost	

§  Example: float(int(2.6)) evaluates to 2.0	


	
 Overview, Types & Expressions	
 12	



