CS 1110 Spring 2013: Lee and Marschner

* Outcomes:

= Fluency in (Python) procedural programming
 Usage of assignments, conditionals, and loops
* Ability to design Python modules and programs

= Competency in object-oriented programming
* Ability to write programs using objects and classes.

= Knowledge of searching and sorting algorithms
* Knowledge of basics of vector computation

* Website:

= www.cs.cornell.edu/courses/cs1110/2013sp/

Overview, Types & Expressions —by Gries, Lee, Marschner, White

ACCEL Labs

Class Structure

Campus u
S ?Pus R Gampus Rd Camps B2

cpeeN " o Enter from front
* Walk to staircase on left |
* Go up the stairs

)

Central Ave

hilips Hall

Engineering
Quad
Hollter Hall

Materials Science
and Engineering
Thurston Kimbal Hal

Hall
Upson Hall

e
Nt

Bard Hal

Snee Hall

Overview, Types & Expressions

Representing Values

e Everything on a computer reduces to numbers
= Letters represented by numbers (ASCII codes)
= Pixel colors are three numbers (red, blue, green)
= So how can Python tell all these numbers apart?

Memorize this definition!
° Type: Write it down several times.
A set of values and the operations on them.
= Examples of operations: +,—,/, *
= The meaning of these depends on the type

Overview, Types & Expressions

¢ Lectures. Every Tuesday/Thursday
= Not just slides; interactive demos almost every lecture
= You may attend either Lecture section (9 or 11)
= Semi-Mandatory. Participation grade from iClickers
* Section/labs. ACCEL Lab, Carpenter 2nd floor
= Guided exercises with TAs and consultants helping out
= Please attend the section you registered for
¢ Tuesday: 12:20, 1:25, 2:30, 3:35
* Wednesday: 12:20, 1:25,2:30, 3:35
= Mandatory. Missing more than 2 lowers your final grade

©

Overview, Types & Expressions

Getting Started with Python

Terminal — sh — 73x36

¢ Designed to be used from
the “command line”

= OS X/Linux: Terminal

= Windows: Command Prompt 3) [N

*Hello, world!'

= Purpose of the first lab

% python
ActivePython 2.7.2.5 (ActiveState Software Inc.) based
7.2 (default, Jun 24 2011, 12:20:15)
Apple Inc. build 5664)] on darwin
"copyright", "credits" or "license" for mc

¢ Once installed type “python”
* Starts an interactive shell This class uses Python 2.7.2
* Python 3 is too cutting edge

= Type commands at >>>
* Minimal software support

= Shell responds to commands

¢ Can use it like a calculator
= Use to evaluate expressions

Overview, Types & Expressions

Expressions vs. Statements

Expression Statement

* Does something
= Python executes it
= Need not result in a value

* Represents something
= Python evaluates it
= End result is a value

* Examples: * Examples:
=23 = print “Hello”
= (3*7+23)*0.1 = import sys

Expression with three
literals and some operators

Expressions, Types, & Variables

Type: int

* Type int (integer):
= values: ..., -3, -2, -1, 0, 1, 2, 3,4, 5, ...
« Integer literals look like this: 1, 45, 43028030 (no commas or periods)
= operations: +, =, *, /,

** unary -
multiply to power of
 Principle: operations on int values must yield an int

= Example: 1 / 2 rounds result down to 0

* Companion operation: % (remainder)

7 % 3 evaluates to 1, remainder when dividing 7 by 3

= Operator / is not an int operation in Python 3 (use // instead)

Overview, Types & Expressions 7

Floats Have Finite Precision

* Python stores floats as binary fractions

= Integer mantissa times a power of 2

= Example: 1.25 is 10 * Z:K
—

mantissa exponent
* Impossible to write most real numbers this way exactly
= Similar to problem of writing 1/3 with decimals
= Python chooses the closest binary fraction it can
* This approximation results in representation error
* When combined in expressions, the error can get worse

= Example: type 0.1 + 0.2 at the prompt >>>

Overview, Types & Expressions 9

Type: bool

* Type boolean or bool:
= values: True, False

¢ Boolean literals are just True and False (have to be capitalized)
= operations: not, and, or

e notb: True ifb is false and False if b is true
¢ band c: True if both b and c are true; False otherwise
e borc: Trueifbis true or ¢ is true; False otherwise

 Often come from comparing int or float values
= Order comparison: i<j i<=j i>=j i>j
= Equality, inequality: i==j il!=j

= means something else!
Overview, Types & Expressions 1

Type: float

* Type float (floating point):
= values: (approximations of) real numbers
* In Python a number with a “.” is a float literal (e.g. 2.0)
¢ Without a decimal a number is an int literal (e.g.)
= operations: +, =, *, /,** unary -
* But meaning is different for floats
« Example: 1.0/2.0 evaluates to 0.5

* Exponent notation is useful for large (or small) values
= -22.51e6 is —22.51 * 10° or —22510000
= 2251e-6 is 22.51 * 10 or 0.00002251

A second kind
of float literal | ©verview.Types & Expressions

Type: str

» Type String or str:

= values: any sequence of characters

= operation(s): + (catenation, or concatenation)
 String literal: sequence of characters in quotes

= Double quotes: " abcex3$g<&" or "Hello World!"
= Single quotes: 'Hello World!'

* Concatenation can only apply to Strings.
= "ab" + "cd" evaluates to "abed"

= "ab" + 2 produces an error

Overview, Types & Expressions

Converting Values Between Types

* Basic form: type(value)
= float(R) converts value 2 to type float (value now 2.0)
= int(R.6) converts value 2.6 to type int (value now 2)
= Explicit conversion is also called “casting”

e Narrow to wide: bool = int = float
e Widening. Python does automatically if needed
= Example: 1/2.0 evaluates to 0.5 (casts 1 to float)
* Narrowing. Python never does this automatically
= Narrowing conversions cause information to be lost
= Example: float(int(2.6)) evaluates to 2.0

Overview, Types & Expressions 12

