
1	

CS 1110 Spring 2013: Lee and Marschner	

•  Outcomes:	

§  Fluency in (Python) procedural programming	

•  Usage of assignments, conditionals, and loops	

•  Ability to design Python modules and programs	

§ Competency in object-oriented programming	

•  Ability to write programs using objects and classes.	

§ Knowledge of searching and sorting algorithms	

•  Knowledge of basics of vector computation	

•  Website:	

§ www.cs.cornell.edu/courses/cs1110/2013sp/	

1	

Overview, Types & Expressions —by Gries, Lee, Marschner, White	

Class Structure	

•  Lectures. Every Tuesday/Thursday 	

§  Not just slides; interactive demos almost every lecture	

§  You may attend either Lecture section (9 or 11)	

§  Semi-Mandatory. Participation grade from iClickers	

•  Section/labs. ACCEL Lab, Carpenter 2nd floor 	

§  Guided exercises with TAs and consultants helping out	

§  Please attend the section you registered for	

•  Tuesday: 	

12:20, 1:25, 2:30, 3:35	

•  Wednesday: 	

12:20, 1:25, 2:30, 3:35	

§  Mandatory. Missing more than 2 lowers your final grade	

2	

Overview, Types & Expressions	

ACCEL Labs	

Overview, Types & Expressions	

 3	

• Enter from front	

• Walk to staircase on left	

• Go up the stairs	

	

Getting Started with Python	

•  Designed to be used from ���
the “command line”	

§  OS X/Linux: Terminal	

§  Windows: Command Prompt	

§  Purpose of the first lab	

•  Once installed type “python”	

§  Starts an interactive shell	

§  Type commands at >>>	

§  Shell responds to commands	

•  Can use it like a calculator	

§  Use to evaluate expressions	

Overview, Types & Expressions	

 4	

This class uses Python 2.7.2	

 • Python 3 is too cutting edge	

 • Minimal software support	

Representing Values	

•  Everything on a computer reduces to numbers	

§  Letters represented by numbers (ASCII codes)	

§  Pixel colors are three numbers (red, blue, green)	

§  So how can Python tell all these numbers apart?	

•  Type: ���
A set of values and the operations on them.	

§  Examples of operations: +, –, /, * 	

§  The meaning of these depends on the type	

Overview, Types & Expressions	

 5	

Memorize this definition!	

Write it down several times.	

Expressions vs. Statements	

Expression	

•  Represents something	

§  Python evaluates it	

§  End result is a value	

•  Examples:	

§  2.3

§  (3 * 7 + 2) * 0.1

Statement	

•  Does something	

§  Python executes it	

§  Need not result in a value	

•  Examples:	

§  print “Hello”

§  import sys

Expressions, Types, & Variables	

 6	

Literal	

Expression with three
literals and some operators	

2	

Type: int	

•  Type int (integer):	

§  values: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …	

•  Integer literals look like this: 1, 45, 43028030 (no commas or periods)	

§  operations: +, –, *, /, **, unary –

•  Principle: operations on int values must yield an int	

§  Example: 1 / 2 rounds result down to 0	

•  Companion operation: % (remainder)	

•  7 % 3 evaluates to 1, remainder when dividing 7 by 3	

§  Operator / is not an int operation in Python 3 (use // instead)	

Overview, Types & Expressions	

 7	

multiply	

 to power of	

Type: float 	

•  Type float (floating point):	

§  values: (approximations of) real numbers	

•  In Python a number with a “.” is a float literal (e.g. 2.0)	

•  Without a decimal a number is an int literal (e.g. 2)	

§  operations: +, –, *, /, **, unary –	

•  But meaning is different for floats	

•  Example: 1.0/2.0 evaluates to 0.5 	

	

•  Exponent notation is useful for large (or small) values	

§  –22.51e6 is –22.51 * 106 or –22510000	

§  22.51e–6 is 22.51 * 10–6 or 0.00002251	

	

Overview, Types & Expressions	

 8	

A second kind
of float literal	

Floats Have Finite Precision	

•  Python stores floats as binary fractions	

§  Integer mantissa times a power of 2	

§  Example: 1.25 is 10 * 2–3	

•  Impossible to write most real numbers this way exactly	

§  Similar to problem of writing 1/3 with decimals	

§  Python chooses the closest binary fraction it can	

•  This approximation results in representation error	

§  When combined in expressions, the error can get worse	

§  Example: type 0.1 + 0.2 at the prompt >>>	

Overview, Types & Expressions	

 9	

mantissa	

 exponent	

Type: str	

•  Type String or str:	

§  values: any sequence of characters	

§  operation(s): + (catenation, or concatenation)	

•  String literal: sequence of characters in quotes	

§  Double quotes: " abcex3$g<&" or "Hello World!"

§  Single quotes: 'Hello World!'	

•  Concatenation can only apply to Strings.	

§  "ab" + "cd" evaluates to "abcd"	

§  "ab" + 2 produces an error	

Overview, Types & Expressions	

 10	

Type: bool	

•  Type boolean or bool: 	

§  values: True, False	

•  Boolean literals are just True and False (have to be capitalized)	

§  operations: not, and, or	

•  not b: 	

 True if b is false and False if b is true	

•  b and c: True if both b and c are true; False otherwise	

•  b or c:	

 True if b is true or c is true; False otherwise 	

•  Often come from comparing int or float values	

§  Order comparison: 	

i < j 	

i <= j 	

i >= j 	

i > j	

§  Equality, inequality: 	

i == j 	

i != j	

Overview, Types & Expressions	

 11	

= means something else!	

Converting Values Between Types	

•  Basic form: type(value)

§  float(2) converts value 2 to type float (value now 2.0)	

§  int(2.6) converts value 2.6 to type int (value now 2)	

§  Explicit conversion is also called “casting”	

•  Narrow to wide: bool ⇒ int ⇒ float	

•  Widening. Python does automatically if needed	

§  Example: 1/2.0 evaluates to 0.5 (casts 1 to float)	

•  Narrowing. Python never does this automatically 	

§  Narrowing conversions cause information to be lost	

§  Example: float(int(2.6)) evaluates to 2.0	

	

 Overview, Types & Expressions	

 12	

