CS 1110, LAB 13: SUBCLASSES; EXCEPTIONS
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/1ab13/1ab13.pdf

L. LEE AND S. MARSCHNER

First Name: Last Name: NetlID:

Files to download. Create a new directory on your hard drive and download the following modules
into that directory. (You can get them all bundled in a single zip file at http://www.cs.cornell.
edu/courses/cs1110/2013sp/labs/lab13/subclassfiles.zip)

card.py (http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/labl13/card.py)
extendedcard.py (http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab13/extendedcard.py)

Getting credit for lab completion. When done, show your code and/or this handout to a staff
member, who will ask you a few questions to see that you understood the material and then swipe
your ID card to record your success.

As always, if you do not finish during the lab, you have until the beginning of lab next week to
finish it: show it to your lab TA at the beginning of that next lab. But you should always do your
best to finish during lab hours. Remember that labs are graded on effort, not correctness.

1. EXTENDING CLASS CARD TO HANDLE JOKERS

You may recall our class Card from previous labs, which represents “standard” cards from the
usual 52-card deck; see the file card.py in this lab’s files. In today’s lab, we’ll use subclassing to let
us include red and black jokers without having to repeat the code we wrote for Card. In particular,
we’ll add a new suit, Joker, but not add new ranks; instead, we’ll have the black joker have rank 1
and the red joker have rank 2.

Take a look at the skeleton file extendedcard.py. In lines 1619, you can see how we’ve begun to
set up the new “Joker” suit using class variables in the subclass ExtendedCard.

1.1. Understanding the skeleton file. Let’s do a few finger exercises to understand various
aspects of the skeleton file.

Open up a command-line interface in the same directory as you have the lab files. Start up
Python, and then at the Python interactive prompt import the module extendedcard.

Now, try the following:

extendedcard.ExtendedCard.SUIT_NAMES

You should get a list of five suits, including “Joker” at the end.
Now try the following:

extendedcard.SUIT_NAMES


http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab13/lab13.pdf
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab13/subclassfiles.zip
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab13/subclassfiles.zip
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab13/card.py
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab13/extendedcard.py

You should get the error “AttributeError: 'module' object has no attribute 'SUIT_NAMES'.” Why?

Make sure you understand the difference between extendedcard and ExtendedCard in this lab; if
you need help with this, ask now.

Now, quit Python, and then change line 12 of extendedcard.py so that instead of “card.Card”
as the parent class of ExtendedCard, you put “Card”. Restart Python, and re-import module
extendedcard. Uh oh; you (should) get an error; why?

Quit Python, and change line 12 back to what it should be.
Next exercise: observe that nowhere in extendedcard.py is there an assignment to a variable
RANK_NAMES. Given this, predict what will happen when you restart Python and then type:

import extendedcard
extendedcard.ExtendedCard.RANK_NAMES

Now try it. Why don’t you get an error; where did the value for RANK_NAMES come from?

1.2. Write the __init__ method for ExtendedCard. For now, let’s have the initialization of our
new, Joker-enabled cards rely completely on the method we already wrote for initializing regular
old cards, which, after all, sets the instance’s suit and rank attributes appropriately, assuming it
receives appropriate input.

Implement __init__ for ExtendedCard with a single line that calls the __init__ method of class
Card in an appropriate fashion.

To test, restart Python, and type in the following;:

import extendedcard
¢ = extendedcard.ExtendedCard(1,4)
joker = extendedcard.ExtendedCard(4,1)

Now try printing those cards. Note that since you have no __str__ method in class ExtendedCard,
what is called is the inherited __str__ method in class Card; the string that method returns is what
is printed.

print c

print joker

You should not get an error for the first statement. Why do you get an error for the second

statement?
2



1.3. Write the __str__ method for ExtendedCard. We’ve just seen that we need to customize
_str__ for ExtendedCard in order to handle the jokers. Find the commented-out header and doc-
string for __str__ in ExtendedCard’s definition (it should be around line 69). Uncomment them,
and then implement the function.

For the case when the extended card is not a joker, you should call the __str__ method of the
superclass, since that already does the right thing.

You should use the class variables BJRANK and RJRANK instead of the “magic numbers” 1
and 2 to check the ranks in the case of jokers. (This is like using the constant SEPIA in A6.) See
the function full_deck near the bottom of file extendedcard.py for an example of how BJRANK and
RJRANK can be referenced.

Test your code by running the same test described in the previous subsection (after restarting
Python). This time, you should get the printout 'Black Joker' for the variable joker.

2. PRACTICE WITH EXCEPTIONS

WEe’ll now try a little exercise using exceptions. The idea is for you to write code that raises an
exception when invalid joker-related input is received, and to handle such exceptions when raised.

It must be said that this could also be handled with if-statements, but we decided to sacrifice a
bit of realism in the interest of keeping things simple.

2.1. The class JokerException. At the end of extendedcard.py, you can see that we've created
our own special subclass of exceptions. That’s all there needs to be in this case.

2.2. The method _checkinput. Take a look at the docstring for this method. Then replace
the “pass” statement in this method with a line that causes a JokerException to be raised when
appropriate.

2.3. Reimplement __init__. Change the initializer so that it first ¢ries the _checkinput method; if
it finds itself handling a JokerException, it should print out a message to the user and then forcibly
change the card to be initialized to a red joker.

(Turn to next page)
3



Here’s a run of our implementation:

>>> import extendedcard

>>> ¢ = extendedcard.ExtendedCard(1,4)

>>> joker = extendedcard.ExtendedCard(4,1)

>>> testjoker = extendedcard.ExtendedCard(4,14)
invalid rank for Joker, changing to the red joker
>>> print c

4 of Diamonds

>>> print joker

Black Joker

>>> print testjoker

Red Joker

Write your code for __init__ in the box below and show it to your instructor.




	Files to download
	Getting credit for lab completion
	1. Extending Class Card to Handle Jokers
	1.1. Understanding the skeleton file
	1.2. Write the __init__ method for ExtendedCard
	1.3. Write the __str__ method for ExtendedCard

	2. Practice with Exceptions
	2.1. The class JokerException
	2.2. The method _checkinput
	2.3. Reimplement __init__


