CS 1110, LAB 05: LISTS; IF-STATEMENTS
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/1ab05/1ab05. pdf

L. LEE AND S. MARSCHNER

First Name: Last Name: NetID:

Files to download. Create a new directory on your hard drive and download the following modules
into that directory. (You can get them all bundled in a single zip file at http://www.cs.cornell.
edu/courses/cs1110/2013sp/labs/1ab05/1ab05files.zip)

card.py (http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/1ab05/card.py)
cardtest.py (http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/1lab05/cardtest.py)
cunittest.py (http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/1lab05/cunittest.py)

Getting credit for lab completion. When done, show your code and/or this handout to a staff
member, who will ask you a few questions to see that you understood the material and then swipe
your ID card to record your success.

As always, if you do not finish during the lab, you have until the beginning of lab next week to
finish it: show it to your lab TA at the beginning of that next lab. But you should always do your
best to finish during lab hours. Remember that labs are graded on effort, not correctness.

1. THE MODULE CARD

You'll be working with the Card type, which is we have almost finished for you in the file card. py.
Cards have two attributes, a suit and a rank. It’s convenient to encode these as numbers, with
two lists serving as “translation tables”. To see how this works, open a Python interactive session
in the same directory as your lab 05 files, and import the card module. Then, for each line below
that isn’t a comment, enter it (and then type return).

card.SUIT_NAMES
look at element 0 and 1 of the list card.SUIT_NAMES
card.SUIT_NAMES[O]
card.SUIT_NAMES[1]
So, the idea is that int s represents the suit given by card.SUIT_NAMES[s], s one of 0, 1, 2, 3.
Similarly, try these:
card.RANK_NAMES
look at some elements of the list card.RANK_NAMES
card.RANK_NAMES[1]
card.RANK_NAMES [2]
card.RANK_NAMES[11]
Again, the idea is that int r represents the rank given by card.RANK_NAMES[r]. !

LSmall detail which you can skip if you don’t care: The value None in element 0 is a bit of an encoding trick so
that we can talk about ranks 1 through 13; there is no card with rank “0”.
1

http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab05/lab05.pdf
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab05/lab05files.zip
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab05/lab05files.zip
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab05/card.py
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab05/cardtest.py
http://www.cs.cornell.edu/courses/cs1110/2013sp/labs/lab05/cunittest.py

What happens if you try card.RANK_NAMES[14], and why? Write your answer below.

Now, practice creating and printing some cards. Our constructor for Cards has two? parameters,
s and r, the ints for the suit and rank of the new card, respectively.
Try the following:
cl= card.Card(0,13)
print card.RANK_NAMES[cl.rank] + ' of ' + card.SUIT_NAMES[cl.suit]
our method of printing Cards uses essentially the line above
print cil

What happens if you try print card.RANK_NAMES[rank], and why? Write your answer below.

Finally, let’s practice creating a new list of two new cards. Here’s one way to do it: try the
following:
cardlist = [card.Card(1,4), card.Card(2,11)]
#check that there are exactly two cards
len(cardlist)
print cardlist[0]
print cardlist[1]

2. WRITING FUNCTIONS FOR CARD DECKS AND HANDS

2.1. print_cards. We're going to be using lists of Cards to represent card decks and card hands.
In doing so, we’d like to be able to look at the contents of a list of cards. Try this:

print cardlist

Not too informative (to humans), right? Your first task is to make a better card-list printing
function by completing function print_cards in module card.py.

First, open modules card.py and cardtest.py in Komodo Edit. Look at test_print_cards
in cardtest.py to see that what it does is run card.print_cards. Try “Run Python Module”
in cardtest.py, and then look at the top of the output; you’ll see that nothing gets printed out
between the lines “about to print a list of two cards using card.print_cards” and “should have
seen...”, indicating that card.print_cards isn’t working yet.

2we'll explain why the constructor actually has three parameters, if you look at the code, later in the course.
2

Right now, card.print_cards looks like this:
def print_cards(clist):

"""Print cards in list clist.

Precondition: <clist is a list of Cards, possibly empty."""
for ¢ in clist:

pass # TODO: fix this line so it prints c (or str(c))

The line for ¢ in clist: is a very simple version of a for-loop, which we’ll learn more about
in next lecture and subsequently in the course. For now, you can think of this line as saying that
it’s going to do something for every card c that is in the list clist; and what it’s going to do to each
card is what you say to do to c in the next line currently marked TODO.

Change the “TODO?” line so that what it does is print the value of variable c. This is a two-word
statement — should be easy! If you do it right, then run the unit test cardtest, you should see at
the top of the output that you got the correct printout.

2.2. full deck. Now you can use card.print_cards to see what other functions do. Exit the
Python interactive shell, then re-open it and import card.py again.
Here’s the specification for function card.full_deck(), which has no parameters: “Returns:
list of the standard 52 cards”. So, try this:
fd = card.full_deck()
card.print_cards(fd)
Good job with that print_cards function!

2.3. draw_poker_hand. OK, now for the exciting (?) part: now that you can play with a full
deck, you can try drawing poker hands from it, by implementing card.draw_poker_hand. Take a
look at its specification. There are going to be several steps involved, which we're going to break
up into helper functions.

You’ll want to make use of standard list operations to implement your helper func-
tions. Look at section 5.1 here: http://docs.python.org/2/tutorial/datastructures.html
or the relevant lecture handouts.

2.3.1. . First, we’ll want to be able to randomly draw a single card from a given deck supplied
as an argument, and return that card, removing it from the deck.

Look at the code skeleton we’ve provided you. We’ve already written a line that choses a random
index i in the card list given as argument. So all you have to do is add a line or two that both (a)
removes the element at index i, and (b) returns that element.

Run the unit test cardtest.py and debug as appropriate until your code passes the test of
cardtest.test_draw.

2.3.2. poker_compare. Now let’s deal with the fact that card.draw_poker_hand wants an ordering
on the list it returns. This ordering will be determined by the function poker_compare.

Using if-statements and the like, implement card.poker_compare according to its specification.
Note that you’ll end up writing some somewhat complex boolean expressions inside your if state-
ments.

Run the unit test cardtest.py to get a quick diagnostic on whether your implementation is correct,
by seeing if you get past cardtest.test_compare().

3

http://docs.python.org/2/tutorial/datastructures.html

2.3.3. finish draw_poker_hand using your helper functions. OK, now for the piece de résistance:
complete function card.draw_poker_hand. Your code should include five calls to draw_card (unless
you feel like figuring out that business about for-loops) — each time adding the item returned by
to the temporary list output — and some list functions. There’s a hint or two regarding
syntax given in the comments in the body of the code.
You can test by running the module card (not cardtest) repeatedly: you should see a random
poker hand printed out each time, plus a small amount of diagnostic information.

	Files to download
	Getting credit for lab completion
	1. The Module card
	2. Writing Functions for Card Decks and Hands
	2.1. print_cards
	2.2. full_deck
	2.3. draw_poker_hand

