
Last Name: First Name: Cornell NetID, all caps:

Circle your lab: Tu 12:20 Tu 1:25 Tu 2:30 Tu 3:35 W 12:20 W 1:25 W 2:30 W 3:35

CS 1110 Prelim 2 April 16th, 2013

This 90-minute exam has 5 questions worth a total of 39 points. When permitted to begin, scan
the whole test before starting. Budget your time wisely. Use the back of the pages if you need
more space. You may tear the pages apart; we have a stapler at the front of the room.

If a question does not explicitly ask for you to write an invariant, you don’t have to for that
problem. However, we strongly recommend that you provide comments explaining the meaning of
your variables if you think they might be unclear to the graders.

The second page of this exam gives you the specifications for some useful functions.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.
We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.
Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date

The Important First Question:

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page, and circle your lab time on the top of this page.

Last Name: First Name: Cornell NetID:

filler

For reference:
lt.index(item) Returns: index of first occurrence of item in list lt; raises an error if

item is not found.
range(n) Returns: the list [0, 1, 2, ..., n-1]
lt[i:j] Returns: A new list[lt[i], lt[i+1], . . ., lt[j-1]] under ordinary

circumstances. Returns [] if i ≥ len(lt).

Question Points Score

1 2

2 9

3 8

4 9

5 11

Total: 39

Page 2

Last Name: First Name: Cornell NetID:

2. [9 points] Recursion. In the spirit of card games, this question is about shuffling cards—or
more generally, shuffling lists. When you shuffle cards you make two stacks, then interleave
them, and if you were to do it perfectly, the even numbered cards would come from one stack
and the odd numbered cards from the other stack. We call this even-odd interleaving a “perfect
shuffle.” Of course, you can do the same thing with any two lists, regardless of what type they
contain.

Your job is to write a recursive function that shuffles together two lists in this way. Here is the
specification:

def shuffle(a, b):
"""Perfectly shuffle two decks. Return a new list that contains the items
in a and b, interleaved in the order a[0], b[0], a[1], b[1], a[2],
If one list is longer than the other, the extra items go at the end.
"""

Write the code for your recursive implementation in the space above. Here are some examples
to illustrate further:

a b shuffle(a,b)
[1, 2, 3] [4, 5, 6] [1, 4, 2, 5, 3, 6]

[1, 2, 3, 4, 5] [10, 20, 30] [1, 10, 2, 20, 3, 30, 4, 5]
[1, 2, 3] [10, 20, 30, 40, 50] [1, 10, 2, 20, 3, 30, 40, 50]

[] [1, 3, 5] [1, 3, 5]

Page 3

Last Name: First Name: Cornell NetID:

3. [8 points] Broken invariant.

Your friends Alice and Ben gave you the following functions, which have the same specification
and are annotated with loop invariants and postconditions.

def even_first_A(x):
"""Organize the list <x> so that even numbers precede odd numbers.
Pre: x is a list of integers."""
i = 0
j = len(x)-1
Inv: x[..i-1] are all even; x[j+1..] are all odd
while j != i+1:

if x[i] % 2 == 0:
i = i + 1

else:
x[i],x[j] = x[j],x[i]
j = j - 1

Post: x[..i-1] are all even; x[i..] are all odd

def even_first_B(x):
"""Organize the list <x> so that even numbers precede odd numbers.
Pre: x is a list of integers."""
i = -1
j = len(x)
Inv: x[..i] are all even; x[j..] are all odd
while j != i+1:

if x[i+1] % 2 == 0:
i = i + 1

else:
x[i],x[j] = x[j],x[i]
j = j - 1

Post: x[..i] are all even; x[i+1..] are all odd

Alice and Ben both claim their code is correct because they implemented using invariants, and
they are sure the invariants are correct. Indeed, their invariants and postconditions are fine;
however, unit testing reveals that in fact neither of these functions works correctly.

Your job: correct each of these two functions so that it agrees with the written invariant and
postcondition, and thereby works correctly. In each case, do so by changing exactly one line.
For each function, show the fix by crossing out the offending line and then writing the correct
version next to it.

Hint: if you’re stuck, try implementing these functions from the invariant yourself on the back
side of the previous page, and then compare your answer with Alice and Ben’s. (But we will
only grade corrections to the code above.)

Page 4

Last Name: First Name: Cornell NetID:

4. [9 points] The motivation for this problem is analyzing patterns in a sequence. Finish the
implementation of the following function; note that we have started it off for you. Your imple-
mentation must use a loop to determine the length of the first run of zeroes in the list data,
and then use recursion to determine the final answer.

def max_zrun_length(data):
"""Returns: length of the longest run of zeroes in data, which is a
list of ints (possibly empty).

Examples: max_zrun_length([0,0,1,0,0,0]) is 3
max_zrun_length([2,0,4,0,5]) is 1
max_zrun_length([3,-2]) is 0
max_zrun_length([]) is 0

"""

if 0 not in data:
return 0

now data is guaranteed to contain at least one 0
i = data.index(0) # i is the position of the first 0

Page 5

Last Name: First Name: Cornell NetID:

5. (a) [7 points] Write the body of the init method for the class whose spec is given below.

class User(object):
"""An instance is a user in a social network.

Instance variables:
username [string]: The name this user will use. Can be any string but ''.
bf [User]: The best friend of this user (None if they have no best friend).

Best-friendship is mutual: if a is b's best friend, then
b must be a's best friend, too.

"""

def __init__(self, username, bf):
"""Initializer: a new user with username <username>. *If* <bf>
is not None and <bf> does not already have a best friend, then
this user's bf is <bf>, and <bf>'s best friend is this user. But
if <bf> is None or <bf> already has a best friend, then this
user's bf should be None instead.

So, after the sequence of statements
u1 = User('1', None)
u2 = User('2', u1)
u3 = User('whee', u2)

u1 should be u2's best friend and u2 should be u1's best friend.
u3 should have no best friend, because u2 is already 'taken'.

Pre: <username>: nonempty string. <bf>: either another user or None.
"""

Page 6

Last Name: First Name: Cornell NetID:

(b) [4 points] Write the body of the breakup function whose spec is given below.
def breakup(users):

"""Make every user in <users> have no best friend (and hence their former
best friends should have no best friend either). Note that some of the
items in <users> may already have no best friend.

Precondition: <users> is a list of users. (May be empty.)
"""

Did you write your name and netID on each page, circle your lab time on the front, and re-read
all specs?

Page 7

