
Announcements	

Slides by D. Gries, L. Lee, S. Marschner, W. White	

Lecture 22: Prelim 2 Review Session	

CS1110

Processed prelim regrade requests: on the front table.	

	

Reminders:	

Exam: 7:30–9:00PM, Tuesday Apr 16th Kennedy 116 (Call
Auditorium, same as before). Arriving early recommended.	

	

Next Tuesday: lectures replaced by professor office hours in
Thurston 102; and labs are staff office hours. Next Wed-Fri: all labs,
staff and consulting hours canceled.	

	

We will start (and, we hope, finish) grading Thursday evening/night.	

	

Material emphasized	

Recursion (A4, Lab 6)	

Defining and using classes (A4, A6, Lab 8)	

For- and while-loops (A4, A6, Lab10)	

Code development from invariants (A6, Lab10)	

[We will assume knowledge of the material covered
previously, in the sense that you should know how to,
say, create lists, draw folders and frames, manipulate
strings, make appropriate test cases. and so on. This
shouldn't require additional studying.]	

Hint: re-read spec after doing problem.	

Additional sources of practice problems	

•  Fall 2012 Prelim 2, questions 4, 5. 	

•  Fall 2012 Final questions, questions 4, 6, 7 given the

invariant for insertion sort and the helper function
push_down.	

•  The worked exercises on loop invariants	

•  Loop problems at

http://codingbat.com/python (interactive
programming exercises). You can try solving the
problems via both loops and recursion, often.	

Provide a recursive implementation	

def merge(s1,s2):

 """Returns: string of characters of s1 and s2, in alphabetical order.

 Examples: merge('ab', '') = 'ab'�
 merge('abbce', 'cdg') = 'abbccdeg'

 Precondition: s1 a string with characters in alphabetical order�
 s2 a string with characters in alphabetical order"""

 if s1 == '' or s2 == '':

 return s1 + s2

 if s1[0] <= s2[0]: # Pick first from s1 and merge the rest

 return s1[0]+merge(s1[1:],s2)

 else: # Pick first from s2 and merge the rest

 return s2[0]+merge(s1,s2[1:])

Provide a recursive implementation	

def skip(s):

 """Returns: copy of string s, odd letters(i.e., 1st, 3rd, 5th) dropped.

 Example: 'abcd' -> 'bd'. '' -> '' 'abc' -> 'b', 'zzz' -> 'z' """

 if len(s) <= 1: # One base case

 return ''

else: # s >= 2 characters (if exactly 2, another base case)

 return s[1] + (skip(s[2:]) if len(s) > 2 else '')

Provide a for-loop implementation	

def skip(s):

 """Returns: copy of string s, odd letters(i.e., 1st, 3rd, 5th) dropped.

 Example: 'abcd' -> 'bd'. '' -> '' 'abc' -> 'b', 'zzz' -> 'z' """

out = '' # progress towards output

Inv: chars s[0..i-1] have been processed. Done when i is len(s)

for i in range(len(s)):

if (i % 2 == 1):

out += s[i]

return out

Provide a while-loop implementation	

def skip(s):

 """Returns: copy of string s, odd letters(i.e., 1st, 3rd, 5th) dropped.

 Example: 'abcd' -> 'bd'. '' -> '' 'abc' -> 'b', 'zzz' -> 'z' """

out = '' # progress towards output

if len(s) <=1: # actually these two lines are optional

return out

i = 1

while (i < len(s)):

out += s[i]

i += 2

return out

Inv: chars s[0..i-1] have been processed. Done when i is len(s)

Defining a class	

class Paper(object):

 """An instance is a scientific paper.

 Class variables:

 number [int]: number of papers that have been created. >= 0

 Instance variables:

 title [string]: title of this paper. At least one char long.

 cites [list of Papers]: papers that this book cites

 cited_by [list of Papers]: papers that this paper is cited by

 """

 number = 0 # initial value is 0

def __init__(self, title, cites=None):

 """Initializer. A new paper with title <title>, citing the papers in list
<cites> (set to [] if <cites> is None), and with cited_by set to []. Unlike
in A4, this initializer should also update the relevant attributes of any
papers in the list <cites>. Pre: arg values as in class specification.

 Don't forget to update the class variable. """

Write the body of __init__	

 def __init__(self, title, cites=None):

 # spec on previous slide

 self.title = title

 self.cites = ([] if cites is None else cites)

 for p in self.cites:

 p.cited_by.append(self)

 self.cited_by = []

 Paper.number += 1 # note how to reference the class variable.

Implement according to invariant	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in i to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

 Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k

 # invariant: b[h..i-1] < b[i], b[j+1..k] >= b[i]

 while i < j:

 if b[i+1] >= b[i]:

 # Move to end of block.

 b[i+1], b[j] = b[j], b[i+1]

 j = j - 1

 else: # b[i+1] < b[i]

 b[i], b[i+1] = b[i+1], b[i]

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

def evaluate(p, x): """Returns: The evaluated polynomial p(x).

We represent polynomials as a list of floats:

 [1.5, −2.2, 3.1, 0, −1.0] is 1.5 − 2.2x + 3.1x**2 + 0x**3 − x**4

We evaluate by substituting in for the value x. For example

 evaluate([1.5,−2.2,3.1,0,−1.0], 2) = 1.5−2.2(2)+3.1(4)−1(16) = −6.5

 evaluate([2], 4) = 2

 Precondition: p is a list (len > 0) of floats, x is a float"""

def evaluate(p, x):

 """(spec on previous slide)"""

 sum = 0 # sum of all the coeffs*x**y for coeffs seen so far

 xval = 1 # value to multiply with next coeff yet unseen

 for c in p: # c is next unseen coefficient

 sum = sum + c*xval

 xval = xval * x

 return sum

One implementation	

def evaluate(p, x):

 """(spec on previous slide)"""

 i=0; xval = 1; sum = p[i] # no point in multiplying by 1; showing

 # i for clarity; it's not really necessary here

 i = 1

 while i < len(p):

 # Invariant: xval = x**(i-1); sum = eval(p[..i-1], x)

 xval *= x

 # or, xval = xval*x

sum += p[i]*xval # or, sum = sum + p[i]*xval

i += 1

 # or, i = i + 1

 return sum

Alternate implementation	

