
Prelim 1 Review ���
Spring 2013	

CS 1110 	
	

Slides by Walker White, Lillian Lee, Steve Marschner	

Announcements	

Prelim 1 Review	
 2	

Extended profs. office hours	

Thursday 9:05-12:05	

Thurston 102	

Prelim study tips	

See Piazza @168	

Exam Info	

•  Prelim 1: 7:30–9:00PM, Thursday, March 7	

  Location: Kennedy 116 (Call Auditorium)	

•  To help you study:	

  Study guides, review slides are online	

  Solutions to Assignment 2 are online	

•  Arrive early! Helps reduce stress	

•  Grades will be released as soon as practical	

  CMS will let you know; hopefully by the weekend	

  Possibly not by drop deadline	

Prelim 1 Review	
 3	

What is on the Exam?	

•  Five Topics (+2pts for name, NetID, lab):	

 String manipulation (A1, Lab 2)	

 Call frames and the call stack (A2)	

 Functions on mutable objects (A3, Lab 3 & 5)	

 Testing and debugging (A1, Lab 3)	

 Short Answer (Terminology)	

Prelim 1 Review	
 4	

String Manipulation	

def make_netid(name,n):
 """Returns a netid for name with suffix n
 Netid is either two letters and a number (if the student has no �
 middle name) or three letters and a number (if the student has �
 a middle name). Letters in netid are lowercase.
 Example: make_netid('Walker McMillan White',2) is 'wmw2'
 Example: make_netid('Walker White',4) is 'ww4'
 Precondition: name is a string either with format '<first-name> �
 <last-name>' or '<first-name> <middle-name> <last-name>'; �
 names are separated by spaces. n > 0 is an int."""

Prelim 1 Review	
 5	

Useful String Methods	

Method	
 Result	

s.index(s1)	
 Returns first position of s1 in s; error if not there	

s.count(s1)	
 Returns number of occurrences of s1 in s	

s.lower()	
 Returns copy of s with all letters lower case	

s.upper()	
 Returns copy of s with all letters upper case	

s.strip()	
 Returns copy of s with whitespace removed	

Prelim 1 Review	
 6	

•  We will give you any methods you need	

•  But you must know how to slice strings!	

String Manipulation	

def make_netid(name,n):
 """Returns a netid for name with suffix n.""”
 name = name.lower() # switch to lower case
 fpos = name.find(' ') # find first space
 first = name[:fpos]
 last = name[fpos+1:]
 mpos = last.find(' ') # see if there is another space
 if mpos == -1:
 return first[0]+last[0]+`n` # remember, n is not a string
 else:
 middle = last[:mpos]
 last = last[mpos+1:]
 return first[0]+middle[0]+last[0]+`n`

Prelim 1 Review	
 7	

Call Stack Example	

•  Given functions to right	

  Function fname() is not

important for problem	

  Use the numbers given	

•  Execute the call:���
lname_first('John Doe')

•  Draw entire call stack
when helper function
lname completes line 1	

  Draw nothing else	

def lname_first(s):
 """Precondition: s in the form�

<first-name> <last-name>""" �
first = fname(s)

 last = lname(s)
return last + ',' + first �

def lname(s):
 """Prec: see last_name_first"""
end = s.find(' ')
return s[end+1:]

Prelim 1 Review	
 8	

1	

2	

3	

1	

2	

Call Stack Example: lname_first('John Doe')	

def lname_first(s):
 """Precondition: s in the form�

<first-name> <last-name>""" �
first = fname(s)

 last = lname(s)
return last + ',' + first �

def lname(s):
 """Prec: see last_name_first"""
end = s.find(' ')
return s[end+1:]

Prelim 1 Review	
 9	

1	

2	

3	

1	

2	

lname_first: 1 2	

'John Doe's

first 'John'

lname: 1 2	

last

'John Doe's

end 4

✗	

✗	

Call Stack Example: lname_first('John Doe')	

def lname_first(s):
 """Precondition: s in the form�

<first-name> <last-name>""" �
first = fname(s)

 last = lname(s)
return last + ',' + first �

def lname(s):
 """Prec: see last_name_first"""
end = s.find(' ')
return s[end+1:]

Prelim 1 Review	
 10	

1	

2	

3	

1	

2	

s

first

last

s

end 4

Omitting this is okay.	

Line 2 is not complete.	
'John Doe'

'John'

'John Doe'

lname_first: 1 2	

lname: 1 2	

✗	

✗	

Line 1 is complete.	

Counter is next line.	

Example with a Mutable Object	

def shift(p):
"""Shift coords left
Precondition: p a point"""
temp = p.x
p.x = p.y
p.y = p.z
p.z = temp

•  May get a function on a
mutable object	

>>> p = Point(1.0,2.0,3.0)
>>> shift(p)

•  You are not expected to
come up w/ the “folder”	

  Will provide it for you	

  You just track changes	

Prelim 1 Review	
 11	

1	

2	

3	

4	

Example with a Mutable Object	

def shift(p):
"""Shift coords left
Precondition: p a point"""
temp = p.x
p.x = p.y
p.y = p.z
p.z = temp

>>> p = Point(1.0,2.0,3.0)
>>> shift(p)

Prelim 1 Review	
 12	

Function Call	

id1	
p

	

	

	

	

	

	

id1	

 1.0
Point	

x

shift: 1 2 3 4	

p

 2.0 y

 3.0 z

id1	

temp 1.0	

1	

2	

3	

4	

✗	
 2.0	

✗	
 3.0	

✗	
 1.0	

✗	
✗	
✗	
✗	

✗	

Objects: example from A3	

•  Type: RGB in colormodel.py 	

  Constructor call: colormodel.RGB(r,g,b)
 --- assuming prior line import colormodel,

and r, g, b are ints in interval 0..255	

Prelim 1 Review	
 13	

Attribute	
 Invariant	

red	
 int, within range 0..255	

green	
 int, within range 0..255	

blue	
 int, within range 0..255	

Function that Modifies Object	

def increase10(rgb):
 """Increase each attribute by 10% (up to 255)
 Precondition: rgb an RGB object"""
 pass # implement me

Prelim 1 Review	
 14	

Sample step	

store in t the value of rgb's red attribute
Which of these is correct? What do the others do?
t = colormodel.RED
t = rgb.red()
t = rgb.r
t = rgb.red
t = colormodel.rgb.red

Prelim 1 Review	
 15	

Sample step – answer in bold	

store in t the value of rgb's red attribute
Which of these is correct? What do the others do?
t = colormodel.RED # refers to something in colormodel
t = rgb.red() # call to function "in" rgb
t = rgb.r # attribute r of rgb, but there's no such attribute
t = rgb.red # <obj name>.<attr name> is the way to access
t = colormodel.rgb.red # refers to something in rgb in

 #colormodel

Prelim 1 Review	
 16	

Should increase10 have return statement?	

Prelim 1 Review	
 17	

Should increase10 have return statement?	

No; the spec doesn't say so.	

Prelim 1 Review	
 18	

Function that Modifies Object	

def increase10(rgb):
 """Increase each attribute by 10% (up to 255)"""
 red = rgb.red # puts red attribute value in local var
 red = 1.1*red # increase by 10%
 red = int(round(red)) # convert to closest int
 rgb.red = min(255,red) # cannot go over 255
 # Do the others in one line
 rgb.green = min(255,int(round(1.1*rgb.green)))
 rgb.blue = min(255,int(round(1.1*rgb.blue)))

Prelim 1 Review	
 19	

Procedure: 	

no return

Prelim 1 Review	
 20	

def multcap(x):
 """Returns: min of nearest int to x*1.1 and 255.
 Precond: x a number"""
 return min(int(round(x*1.1)), 255)

def increase10(rgb):
 """Increase each attribute by 10% (up to 255)"""
 # alternate solution with massive map
 alist = map(multcap, [rgb.red, rgb.green, rgb.blue])
 rgb.red = alist[0]
 rgb.green = alist[1]
 rgb.blue = alist[2]

Procedure: 	

no return

Code up a test case for increase10���
(assume in module reviewp1)	

 testcolor = colormodel.RGB(10,100,255)
 reviewp1.increase10(testcolor)
 cunittest2.assert_equals(colormodel.RGB(11,110,255),

 testcolor)

Why not this?
cunittest2.assert_equals(colormodel.RGB(11,110,255),

 reviewp1.increase10(testcolor))

Prelim 1 Review	
 21	

No return value to compare against.	

Prelim 1 Review	
 22	

•  Type: Length in module ell	

  Constructor call: ell.Length(ft,in)
 --- assuming prior line import ell and ft and in are
ints, given:	
 Attribute	
 Invariant	

feet	
 int, non-negative, = 12 in	

inches	
 int, within range 0..11

inclusive	

def difference(len1,len2):
 """Returns: Difference between len1 and len2
 Result is returned in inches
 Precondition: len1 and len2 are length objects�
 len1 is longer than len2"""
 pass # implement me

Function that Does Not Modify Object	

def difference(len1,len2):
 """Returns: Difference between len1 and len2
 Result is returned in inches
 Precondition: len1 and len2 are length objects�
 len1 is longer than len2"""
 feetdif = (len1.feet-len2.feet)*12
 inchdif = len1.inches-len2.inches # may be negative
 return feetdif+inchdif

Prelim 1 Review	
 23	

Picking Test Cases	

def pigify(w):	

 """Returns: copy of w converted to Pig Latin
 'y' is a vowel if it is not the first letter
 If word begins with a vowel, append 'hay'
 If word starts with 'q', assume followed by 'u'; �
 move 'qu' to the end, and append 'ay'
 If word begins with a consonant, move all �
 consonants up to first vowel (or to end of w, if
none) to end and add 'ay'
 Precondition: w contains only (lowercase)
letters, and at least one letter"""Prelim 1 Review	
 24	

Picking Test Cases	

def pigify(w):	

 """Returns: copy of w converted to Pig Latin"""	

 …	

•  Test Cases (Determined by the rules):	

  yield => ieldyay (y as consonant)	

  byline => ylinebay (y as vowel)	

  are => arehay 	
 	
(Starts with vowel)	

  quiet => ietquay 	
 	
(Starts with qu)	

  ship => ipshay (Starts with consonant(s))	

  bzzz => bzzzay (All consonants)	

	

	

Prelim 1 Review	
 25	

Tracing Control Flow	

def first(x):
1.  print 'Starting first.'
2.  second(x)
3.  print 'Ending first’

def second(x):
1.  print 'Starting second.'
2.  if third(x):
3.  pass
4.  else:
5.  print 'Caught False at second’
6.  print 'Ending second’

def third(x):
1.  print 'Starting third.'
2.  print ’Ending third.'
3.  return x < 1	

What is the output of first(2)?	

Prelim 1 Review	
 26	

Tracing Control Flow	

def first(x):
1.  print 'Starting first.'
2.  second(x)
3.  print 'Ending first’

def second(x):
1.  print 'Starting second.'
2.  if third(x):
3.  pass
4.  else:
5.  print 'Caught False at second’
6.  print 'Ending second’

def third(x):
1.  print 'Starting third.'
2.  print ’Ending third.'
3.  return x < 1	

What is the output of first(2)?	

Prelim 1 Review	
 27	

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Caught False at second'
'Ending second'
'Ending first'
	

Tracing Control Flow	

def first(x):
1.  print 'Starting first.'
2.  second(x)
3.  print 'Ending first’

def second(x):
1.  print 'Starting second.'
2.  if third(x):
3.  pass
4.  else:
5.  print 'Caught False at second’
6.  print 'Ending second’

def third(x):
1.  print 'Starting third.'
2.  print ’Ending third.'
3.  return x < 1	

What is the output of first(0)?	

Prelim 1 Review	
 28	

Tracing Control Flow	

def first(x):
1.  print 'Starting first.'
2.  second(x)
3.  print 'Ending first’

def second(x):
1.  print 'Starting second.'
2.  if third(x):
3.  pass
4.  else:
5.  print 'Caught False at second’
6.  print 'Ending second’

def third(x):
1.  print 'Starting third.'
2.  print ’Ending third.'
3.  return x < 1	

What is the output of first(0)?	

Prelim 1 Review	
 29	

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'
	

Looking for inspiration?���
"""What most schools don't teach: Learn
about a new "superpower" that isn't being
taught in 90% of US schools."""	

	

	

https://www.youtube.com/watch?feature=player_embedded&v=nKIu9yen5nc	

Prelim 1 Review	
 30	

