
Last Name: First Name: Cornell Netid:

Questions 2 and 3 from the CS 1110 Final December 7th, 2012
Adapted to the terminology and conventions of Spring 2013

Classes and Subclasses
In Assignment 7 you got experience with GRectangle and GEllipse which extended GObject. This
question deals with three very similar classes: Shape, Rectangle, and Circle.
These classes are similar to those in A7 except for two very important details. First of all, there
is no drawing code. More importantly they do not use the advanced keyword arguments
used by Kivy. The expression **keyword should not appear anywhere in your solution.

(a) [8 points] The skeleton for class Shape is provided on the next page. Complete the initializer
and method str according to their specification, being sure to maintain all class invariants.

(b) [10 points] You are to create the classes Rectangle and Circle, each of which is a subclass
of Shape. We have not provided you with any skeleton code for these classes; you are to
implement everything yourself.

The classes have no new attributes beyond those inherited from Shape. For each class
implement its initializer and method calculateArea() according to the following constraints.

• The initializer for Rectangle should have an header that looks exactly like the initializer
for Shape, including default values. The body of this constructor should be a single line
call to the initializer of its superclass. You can skip the specifications in the interest of
time.

• The initializer for Circle should have three parameters: x, y, and radius. Using the
initializer of its superclass, it should set the width and height attributes to the diameter
(= 2r).

• In both classes, method calculateArea() should return the area of the shape. For class
Circle, you may use the constant PI in module math. Remember that the area of a circle
is πr2.

You can assume that math is imported; you do not need to write an import statement in your
code. Implement your classes on the blank page after the class Shape.

Last Name: First Name: Cornell Netid:

class Shape(object):
"""Instance is a 2-dimensional geometric shape.
Instance variables:
x [float]: x-coordinate of bottom-left corner
y [float]: y-coordinate of bottom-left corner
width [float]: shape’s width; >= 0
height [float]: shape’s height; >=0 """

def init (self, x=0.0, y=0.0, width=0.0, height=0.0): # Fill in
"""Initializer: shape with given values x, y, width, and height (in order).
Precondition: x, y, width, and height are floats with width, height >= 0.0.
All parameters have a default of 0.0."""
self.x = x
self.y = y
self.width = width
self.height = height

def str (self):
"""Returns: Description of shape geometry in format '[x,y,width,height]'.
return ('['+str(self.x)+sq,+str(self.y)+','+

str(self.width)+','+str(self.height)+']')

(Answer Question (b) here)
class Rectangle(Shape):

def init (self, x=0.0, y=0.0, width=0.0, height=0.0):
Shape. init (self,x,y,width,height)

def calculateArea(self):
return self.width*self.height

class Circle(Shape):
"""Instance is a circular shape"""

def init (self, x, y, radius):
Shape. init (self,x,y,radius*2,radius*2)

def calculateArea(self):
return math.pi*(self.width/2.0)*(self.width/2.0)

[?? points total] Call Frames and Diagrams

Suppose you were to modify class Shape to include the following method.

def contains(self,q):
"""Returns: True if point q is in this Shape’s bounding rectangle; False
otherwise.
Precondition: q is a list [x,y]."""
1 in x = self.x < q[0] and q[0] < self.x+self.width
2 in y = self.y < q[1] and q[1] < self.y+self.height
3 return in x and in y

Page 2

Last Name: First Name: Cornell Netid:

Consider then the following code, placed in the same file as the definition of class Shape and
your subclasses.

rect = Rectangle(0.0,0.0,1.0,2.0)
circle = Circle(1.0,1.0,3.0)
shape = rect
p = [1.0, 2.0]
value = shape.contains(p)

(a) [10 points] Execute the file, including the code above: draw all variables and folders that are
created. Do not worry about call frames (yet). You do not have to draw the object class
folder.

__init__(x,y,width,height)	

__str__()	

contains(q)	

Shape	

__init__(x,y,width, height)	

calculateArea()	

Rectangle(Shape)	

__init__(x,y,radius)	

calculateArea()	

Circle(Shape)	

Circle	

x

id2	

1.0

1.0

y

width
height 6.0

6.0

Rectangle	

x

id1	

0.0

0.0

y

width
height 2.0

1.0

List	

0

id3	

2.0

1.0

1

id1 rect

id1 shape

id2 circle

id3 p

False value

(b) [10 points] Draw your execution of the call shape.contains(p). At the end, the relevant
frame(s) should be crossed out. You do not need to redraw the folders; simply use the folder
names for your answer in part (a).

self !q!

in_x in_y!

Shape.contains:1 2 3

id1! id3!

False! False!

Page 3

